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Introduction
Sentence A: “If Sentence A is true, then the Eiffel Tower is in Munich.”

Let us assume that Sentence A is true. Then, by definition, the Eiffel Tower is located in Munich. Discharging
the assumption, we can state that “If Sentence A is true, then the Eiffel Tower is in Munich.” is true. This, however,
is exactly Sentence A. Using the definition of Sentence A, we can conclude that the Eiffel Tower is in Munich.

This argument is known as Curry’s paradox. Where did this apparent proof go wrong? One way to resolve the
paradox is to accept only formal systems that do not allow the construction of Sentence A.

But how should we determine the appropriate formal system? Many mathematicians tackled this question in the
early 20th century. Ideally, they aimed to discover a system capable of proving or disproving any given proposition
and demonstrating its consistency through finite means. However, Gödel shattered these aspirations in 1931 by
proving the existence of true but unprovable mathematical formulas. Moreover, he demonstrated that any attempt to
formalize mathematics that satisfies minimal requirements will be subject to his incompleteness theorem.

To fully appreciate Gödel’s remarkable proof, we must first immerse ourselves in the world of formal theories
and their construction. We will explore the building blocks of formal theories, including axioms, rules of inference,
and the logical language that forms the foundation of these systems. This understanding will later enable us to
prove metamathematical properties of systems, such as the aforementioned provability restrictions of Gödel’s
incompleteness theorem. Furthermore, as we navigate the realm of formal languages, we will differentiate between
first-order theories and second- and higher-order theories, which differ in their ability to quantify over objects,
properties of objects, and so on.

To help the reader develop an intuition for constructing proofs in a fully formal way, we will provide detailed
examples of formal proofs in the first chapter. We will show that seemingly simple properties, such as the commuta-
tivity of addition of natural numbers, k + n = n + k, require extensive and elaborate proofs.

Similar to how we distinguish between group axioms and examples of groups like Z and Q, we will distinguish
between axiomatic theories and their models – that is, worlds that satisfy these axioms. Since our language is
defined in a formal system, but the notion of truth exists only in models, we can only speak of true mathematical
propositions in a formal theory if they are true in all realizations. A significant milestone in model theory was the
completeness theorem, which states that in first-order logic and given a sufficiently expressive logical axiom system,
this notion of truth is equivalent to the notion of provability.

This seemingly contradicts Gödel’s first incompleteness theorem which states that there are unprovable and
unrefutable sentences. However, in this context, Gödel’s incompleteness theorem only asserts that there are math-
ematical statements that are true in some models and false in others. This shows that we cannot axiomatize, for
instance, the natural numbers up to isomorphism in first-order logic. We will first prove this result in a different way,
using the Löwenheim–Skolem theorem: If a first-order theory has an infinite model, it has arbitrarily large models.

In the second part of our journey, we will examine Gödel’s original proof of the first and second incompleteness
theorems. Gödel’s revolutionary idea was to represent mathematical symbols, and consequently strings of these
symbols as well as strings of strings of such symbols by natural numbers. By doing so, he effectively transformed
the discussion of metamathematical relations like “ϕ1, . . . , ϕr is a proof of ψ” to the discussion of natural num-
bers: “The natural number n corresponds to a proof of the formula corresponding to the number k”. Furthermore,
he showed that – given the set of axioms is accessible enough – this relation of natural numbers (n corresponds to a
proof of a formula that corresponds to k) has an easy-to-understand structure. In particular, he showed that we can
construct an arithmetical formula φ(x, y) in our formal theory that captures this relation of natural numbers: If n
and k are natural numbers such that the above relation holds, our formal theory proves φ(n, k). Conversely, if the
relation does not hold, our theory proves ¬φ(n, k). Using this technique, Gödel was able to provide a self-referencing
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sentence χ that semantically talks about its own provability. It was then easy for Gödel to show that the provability
of χ as well as of ¬χ each entail that a contradiction is provable.

Gödel initially showed this result for so-called ω-consistent theories, which are slightly stronger than merely
consistent theories. Five years later, J. Barkley Rosser improved this result to encompass consistent theories, using
what is now known as Rosser’s trick. His proof resembles the Liar’s Paradox:

“This sentence is false.”

If this sentence is true, this sentence is false. Conversely, if it is false, it is true. A similar version of this sentence,
talking about provability instead of truth, can be stated in many formal theories, and is precisely Rosser’s sentence.
However, the process of constructing such a self-reference is non-trivial, and it is the critical part of this proof.

In addition to his first incompleteness theorem, Gödel provided a second startling result: If a formal theory can
prove that it produces no contradictions (is consistent), then it must produce contradictions (is inconsistent), and
could only prove that it produces no contradictions because it proves everything. Consequently, a consistent theory
does not prove that it is consistent. We will demonstrate this statement using Löb’s theorem, which is yet another
fascinating result. It states that if a theory cannot prove a formula, it cannot prove that a proof of that formula would
imply the formula. In some sense, it shows that formal theories do not trust their own judgment.

In the final part of our exploration, we will present an accessible example of the first incompleteness theorem.
Given a sufficiently expressive programming language, we can write a program that enumerates all the proofs of
a theory and stops if and only if it finds a proof of 0 = 1. If we incorporate the description of this program into
our formal theory, and assume that the theory is consistent, then the theory cannot prove that the program will
never stop. If it could, we would have a proof of the consistency of the theory, which contradicts Gödel’s second
incompleteness theorem.

In this paper, we adopt a possible formal framework for vast areas of modern mathematics, ZFC, and choose Tur-
ing machines as our programming language. We then discuss a 748-state Turing machine that enumerates all proofs
and halts if and only if it finds a contradiction. The above argument can be translated informally as: “Assuming that
modern mathematics does not produce contradictions, then modern mathematics is incapable of proving that this
particular Turing machine will never stop.” This striking result defies intuition, since one might assume that, given
enough time and space, it should be possible to determine whether a program will eventually stop or continue looping.

We can reformulate this statement. Given all Turing machines with n states (finitely many), there will be some
that will loop forever and some that will eventually stop. If we focus only on those that will halt, there exists a
machine with n states that will run the longest. Let us define BB(n) to be the number of steps this machine runs
before it halts. We will show that the function BB(n) is well defined and rapidly increasing. If we knew the value of
BB(748), we could simulate the above Turing machine for BB(748) steps, prove that it has not yet halted – assuming
that ZFC is indeed consistent – and that it will never halt (because that would contradict the definition of BB(748)).
This is impossible and shows that ZFC cannot settle the value of BB(748). It is the result obtained by Stefan O’Rear
in 2017, [ORe16, zf2.nql], which surpasses his previous bound of 1919 from 2016 [ORe16, zf.nql]. O’Rear’s work
significantly improved upon the initial 2016 research by Adam Yedidia and Scott Aaronson, which established an
upper bound of 7910,[YA16]. Their work was the first of its kind and initiated this line of inquiry.

The main goal of this paper, presented at the very end, is to further refine this optimized result. We discuss
the construction of O’Rear’s machine and detail our efforts to increase the number of states. Through these
improvements, we successfully lowered the upper bound of undecidability from n = 748 to n = 745.
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1.7 Consequences of Gödel’s Completeness Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.8 Exploring Second-Order and Higher-Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.9 Type Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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1 Introduction to Logic

The following is a brief introduction to the basic definitions and concepts that will be relevant in the coming sections.
We follow the ideas of [Bar77, Chapter A1, §2–§4] and adopt much of Barwise’s notation. A good introduction to
first-order logic with similar definitions is also given in [Pro21] and [Pro22].

1.1 Metalogic vs. Logic

In order to determine the provability of statements within a formal theory, it is essential to examine the theory from
an external perspective. This broader context, known as ”metalogic,” provides the logic and reasoning used in
proofs, and it is crucial to distinguish it from the internal logic or theory being studied.

In this context, we will use the high-level language of English and standard logic (e.g., ZFC) as our metalogic.
It is worth noting that the main results of this thesis can also be obtained assuming a weaker metalogic.

1.2 First-Order Languages

To talk about terms, formulas, and sentences, we need to introduce the notion of a language. Similar to natural
languages like English or German, we will introduce a logical language as a set of symbols and later introduce rules
how to form expressions and formulas with them (syntax).

Definition 1.2.1. (First-order language with equality) A first-order language L is a set of symbols:

• logical symbols: {¬,∨,∀,=},

• constant symbols and variables: C ⊆ {ci | i ∈ N}, V = {xi | i ∈ N} respectively,

• function symbols: F ⊆ { fi | i ∈ N},

• relation symbols R ⊆ {ri | i ∈ N},

• and brackets: {“(”, “)”}

together with a function # : F ∪ R→ N>0. We call #( f ) and #(r) the arity of f and r, respectively, and define it as
the number of elements to be given as input.

For better readability, we shall permit symbols not of the form xi, fi, ri for variables, function symbols, and
relation symbols, respectively (for example, we shall permit y, z, . . . to denote variables). The reader may regard
this as metamathematical notation, or may extend our definition to include these symbols. We will also use ξ, ζ,
and ϑ to denote meta-variables. These variables are not part of the language, but can be understood as placeholders
for any variable of the language.

Note that the sets C,F and R are subsets and may be finite or empty. To make this definition more compact, one
could allow #( f ) = 0 and interpret such functions as constants. The fact that “=” is a logical and not a relational
symbol is not a mistake. As we will see later, equality can not be formulated as a relation in first-order logic.

Example 1.2.2. (Peano arithmetic) An important example is the language we will use for Peano arithmetic (PA).
In this system we use the language LPA given by: C = {0},F = {S = f0,+ = f1,× = f2}, and R = {<= r1},
where #(S) = 1 and #(+), #(×), #(<) = 2. We will discuss PA in more detail in the next chapter.

Definition 1.2.3. (Terms) We define the notion of terms inductively:

• All variables xi and constants ci are terms

• If f is a function symbol with #( f ) = n and t1, ..., tn are terms then f (t1, ..., tn) is a term
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Definition 1.2.4. (Formulas) We define formulas inductively:

• For a given n-ary relation symbol r and terms t1, ..., tn we define

(t1 = t2), (r(t1, ..., tn))

as (atomic) formulas.

• If φ, ψ are formulas then
(φ ∨ ψ), (¬φ), (∀ξ φ)

are formulas of the language L.

Note that φ and ψ are not language symbols. Similar to how ξ, ζ and ϑ describe variables, we use symbols
like φ, ψ and χ in our metamathematical notation to refer to formulas.

Example 1.2.5. The following formulas of the language LPA are syntactically correct:

φ := (¬(0 = 0)) ,

χ := (∀x (¬(∀y (¬(<(x, y)))))) ,

ψ := (¬(∀x (¬(∀y ((¬(<(x, y))) ∨ (¬(∀ (¬(¬(∀z2 (

¬(¬((¬(¬((¬(×(z2, y))) ∨ (¬(<(z1, y)))))) ∨ (¬(<(z2, y)))))))))))))))) ,

(1)

whereas, strictly speaking, those are not:

φ := ¬(0 = 0) ,

χ := ∀x ∃y (x < y) ,

ψ := ∃x ∀y (x < y→ ∃z1 ∃z2 (z1 · z2 = y ∧ z1 < y ∧ z2 < y)) .

(2)

This is because they use undefined symbols or incorrect bracketing.

Notation 1. We introduce a notation in the metalanguage for more readability:

• We define the (familiar) abbreviations:

– (∃ξ φ) := (¬(∀ξ (¬φ))),

– (φ ∧ ψ) = (¬((¬φ) ∨ (¬ψ)),

– (φ→ ψ) := ((¬φ) ∨ ψ),

– (φ↔ ψ) := ((φ→ ψ) ∧ (ψ→ φ)) .

• In addition, we set ξ f ζ := f (ξ, ζ) or ξ r ζ := r(ξ, ζ) when we see fit for some 2-ary function symbols or
relation symbols of the language (e.g. f = +, r = < in LPA).

• As long as the parsing order is clear, we may omit brackets. We also allow brackets of different sizes, as well
as square brackets.

With this notation the formulas φ, χ, ψ of Equation (1) turn into the formulas of Equation (2).

Definition 1.2.6. (Free variables) Let φ be a formula in a language L. The set FV(φ) is defined recursively:

• If φ is an atomic formula, then FV(φ) is defined as the set of variables that occur in φ,

• FV(¬φ) := FV(φ) and FV(φ ∨ ψ) := FV(φ) ∪ FV(ψ),
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• FV(∀ξ φ) := FV(φ)\{ξ}.

It describes the set of free variables (i.e. variables that are not bound by quantifiers) in φ. If FV(φ) = ∅, we call φ a
closed formula or sentence in L.

1.3 Axiomatic Systems and Their Models

The goal of axiomatic systems is to generalize an example by extracting the key features of interest. Models are
structures that satisfy these axioms. To be more precise:

Definition 1.3.1. (Axiomatic system) An axiomatic system A in a language L is a (not necessarily finite) set of
sentences in the language L.

Definition 1.3.2. (Formal theory) The combination of a first-order predicate language L together with an axiomatic
system A is called a formal theory of first-order. We will denote such a theory by the letter T.

Definition 1.3.3. (Structures for a language L) A (set-theoretic) structure S = ⟨M, I⟩ for a given language L is a
pair of a nonempty set M and a function I with domain L such that:

• I(C) ⊆ M,

• I(r) ⊆ M#(r) for every relation symbol r ∈ R,

• I( f ) is a function with I( f ): M#( f ) → M.

So far, terms, formulas, and sentences are just meaningless finite strings of symbols. Now we introduce
semantics to our language. To do so, we introduce a way to insert values into variables:

Definition 1.3.4. (Variable assignment) Let L be a first-order language and s : V→ M be a function. We call s an
assignment for S and define the notion t

∣∣∣
V←s for terms t recursively:

• If t is a constant, then t
∣∣∣
V←s

:= I(t).

• If t is a variable, then t
∣∣∣
V←s

:= s(t).

• f (t1, ..., tn)
∣∣∣
V←s

:= I( f )(t1
∣∣∣
V←s , . . . , tn

∣∣∣
V←s ), for every function symbol f ∈ F and terms t1, ..., tn.

Definition 1.3.5. (Semantics of a language L) Let L be a language, S a corresponding structure and s an assignment
for S. We define recursively for terms t1, t2, . . . , tn and formulas φ, ψ:

• S |= (t1 = t2)
∣∣∣
V←s if and only if t1

∣∣∣
V←s = t2

∣∣∣
V←s ,

• S |= r(t1, ..., tn)
∣∣∣
V←s if and only if

(
t1
∣∣∣
V←s , ..., tn

∣∣∣
V←s

)
∈ I(r),

• S |= (φ ∨ ψ)
∣∣∣
V←s if and only if S |= φ

∣∣∣
V←s or S |= ψ

∣∣∣
V←s ,

• S |= (¬φ)
∣∣∣
V←s if and only if not S |= φ

∣∣∣
V←s ,

• S |= (∀ξ φ)
∣∣∣
V←s if and only if for all a ∈ M, S |= φ

∣∣∣
V←s[ξ/a] .

By s[ξ/a] we denote the assignment for S that results from s by setting ξ 7→ a ∈ M and extending this change to the
recursive definition for terms in Definition 1.3.4 (i.e., in each term ξ is sent to a).

Some remarks on Definition 1.3.5:
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• If φ is a sentence, i.e. a closed formula, we simply write S |= φ, because the specific choice of s does not
affect the interpretation. Because of our recursive definition of formulas and because we adopt a classical
metatheory, this uniquely determines whether for a sentence S |= φ or S ̸|= φ holds. If S |= φ holds, we say
that S satisfies φ.

• Note that the above definition mixes expressions of L and the meta language. For instance in the first bullet
point the “=” on the left side is part of a formula in L whereas the right “=” is part of the meta language.
Similarly for the other bullet points.

• Also note that because of the fourth bullet point, for an arbitrary formula φ it is never the case that S ̸|= φ
and S ̸|= ¬φ. The same generally cannot be said about its counterpart in formal theories. This is the result of
Gödels first incompleteness theorem and we will explore its proof in detail in Chapter 2.

• Furthermore, note that in Definition 1.2.4 we allow the same variable symbol to be bound by different
quantifiers. This can be understood semantically using the shadowing principle. The reader may be familiar
with a similar concept used in many programming languages that distinguish between local and global
variables. Although they may be defined with the same name, they are accessed differently depending on the
context and within a given scope. Similarly, in formal languages, only the innermost binding is valid in a
semantic interpretation. This concept is captured by Definition 1.3.5. For instance, the formula

∃x [(∀x r1(x))→ r2(x)]

is syntactically correct (after replacing abbreviations and correcting brackets). It has the following semantic
interpretation: There exists one particular a ∈ M such that b ̸∈ I(r1) for at least one b ∈ M or a ∈ I(r2).
For the sake of clarity, we will avoid such notation whenever possible. Nevertheless, it is useful to reduce
restrictions for some definitions, and we need it in Chapter 3 to define the set of axioms more efficiently.

Definition 1.3.6. (Models of an axiomatic system) Let L be a first-order language and A an axiomatic system in L.
A structure M for L such that M |= φ for each axiom φ ∈ A is called a model of A and is denoted as M |= A.

Definition 1.3.7. (Semantic consequence) Let L be a first-order language, A an axiomatic system and φ a formula
in L. We define:

A |= φ :⇐⇒ {S structure for L | ∀ψ ∈ A : S |= ψ} ⊆ {S structure for L | S |= ψ}

⇐⇒ Every model of A is also a model of {φ}

In this case we call φ a semantic consequence of A. If A = ∅, we write |= φ.

Example 1.3.8. (Axioms of Robinson arithmetic Q) We set LQ = LPA. The axiomatic system AQ of LQ is the set
containing the following formulas:

∀x ¬(0 = S(x))Q1. ∀x ∀y (S(x) = S(y)→ x = y)Q2.

∀x (x + 0 = x)Q3. ∀x ∀y (x + S(y) = S(x + y))Q4.

∀x (x × 0 = 0)Q5. ∀x ∀y (x × S(y) = (x × y) + x)Q6.

∀x ∀y (x < y↔ ¬∃z (x = y + z))Q7.

We write n :=
n-times︷     ︸︸     ︷

S(...S(0)) as an abbreviation. Obviously, these axioms try to extract central features of the natural
numbers and their basic arithmetic. The following counterexample shows that Q is not sufficient to characterize N
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up to isomorphism: Set M = N[♢] = {an · ♢
n + ... + a1 · ♢ + a0 | ai ∈ N}. We define I(+) : N[♢]2 → N[♢] as the

addition in the semiring N[♢] and likewise I(×) : N[♢]2 → N[♢] as the multiplication. Furthermore, we set:

I(S) : N[♢]→ N[♢] , p 7→ p + 1 , I(0) = 0 ∈ N[♢] , I(<) = {(p, q) ∈ N[♢]2 | ¬∃r ∈ N[♢] : (p = q + r)}.

According to Definition 1.3.3 this uniquely defines a structure S for LQ. It is easy to prove that ⟨M, I⟩ |= AQ but
clearly this model is not isomorphic to N since ♢ ≠ 0 has no predecessor.

The problem with the above system is the missing axiom of induction. A naive attempt to formalize the induction
principle as a sentence would be:

∀φ
(
φ
(
0
)
∧ ∀n

(
φ (n)→ φ

(
n + 1

))
→ ∀n φ (n)

)
. (3)

There are two issues with Equation (3). First, in Definition 1.3.5 we agreed that, when interpreted, quantifiers always
range over the set M, i.e. over objects. This limitation gives first order logic its name. Equation (3) on the other
hand implies that it is possible to quantify over properties of objects, i.e. sets of objects.

Second, the above equation also implicitly quantifies over the set {x | ∃n ∈ N : x = n}, but this is only possible
if the set can be formalized within LQ, which in particular would require that we can uniquely axiomatize N
within LQ – a vicious circle.

The second problem can be fixed by changing Equation (3) into:[
φ
(
0
)
∧ ∀ξ

(
φ(ξ)→ φ(S(ξ))

)]
→ ∀ξ φ(ξ) . (4)

We will define later exactly what we mean by the substitutions φ
(
0
)

and φ(S(ξ)). Next, let us fix the first problem
by adding the sentence in Equation (4) to our axiomatic system, for each formula φ and variable ξ. This idea is
called axiom schema. Initially, it may seem like a disadvantage to have an infinite number of axioms. However, our
axiom set is primitively recursive. In other words, one could write a computer program that checks whether a given
formula is an axiom in a finite number of computational steps. We will study primitive recursive sets in more detail
in Section 2.2. Thus, despite the infinite number of axioms, our axiom scheme is no less efficient than a finite list.
The changes to AQ result in:

Example 1.3.9. (Axiomatic system of Peano arithmetic (PA)) The axiomatic system of Peano arithmetic is defined
as the set AQ together with the axiom schema of induction defined above. Although stronger than AQ, the system
APA is still not able to uniquely characterize the natural numbers. To prove this, we will take a look at two important
theorems of model theory.

One of the interesting questions in model theory is whether there are models for a given set of axioms. The
following theorem by Kurt Gödel allows us to always reduce this problem to a finite matter.

Theorem 1.3.10. (Compactness Theorem [Gödel, 1930]) Let L be a first-order language and A an axiomatic
system in L. There exists a model M |= A of A if and only if every finite subset A0 ⊆ A has a model M0 |= A0.

Proof. For a detailed proof see [Bar77, pp. 23–33]. □

A different formulation of this theorem is as follows:

Theorem 1.3.11. (Compactness Theorem - alternative formulation) Let L be a first-order language and A ∪ {φ} a
set of axioms in L. If and only if A |= φ, there exists a finite subset A0 ⊆ A such that A0 |= φ.

Proof. The key step in this proof is taken from [Bar77]. We will show that this statement is an immediate corollary
of Theorem 1.3.10. One direction is trivial. For the other direction let us assume A |= φ. We want to show that there
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exists a finite subset A0 ⊆ A such that A0 |= φ. If A does not have a model, then by Theorem 1.3.10 there exists a
finite subset A0 ⊆ A that also does not have a model. For this subset it is trivial that A0 |= φ and we are done. For the
other case, let us assume that A has at least one model M. By hypothesis, M |= φ. Set A2 := A∪ {¬φ}. It is obvious
that A2 does not have a model since M2 |= A2 would imply M2 |= φ and M2 |= ¬φ. Therefore, by Theorem 1.3.10,
it follows that there exists a finite subset A1 ⊆ A2 which also does not have a model. Since A1 ∪ {¬φ} does not have
a model, there does not exist a structure S for L such that S |= A0 := A1\{¬φ} ⊆ A and S |= ¬φ. Thus, every model
of A0 must satisfy φ which, by definition, implies A0 |= φ. □

In fact, both theorems are trivially equivalent:

Lemma 1.3.12. Theorem 1.3.11 implies Theorem 1.3.10.

Proof. One direction of Theorem 1.3.10 is trivial. For the other direction let L be a first-order language and A a
corresponding axiomatic system such that every finite subset A0 ⊆ A has a model. Set φ := ¬∀x (x = x). This is
always a sentence in L and every structure S for L will trivially satisfy ¬φ. The contrapositive of one direction of
Theorem 1.3.11 states that A ̸|= φ holds if A0 ̸|= φ holds for every finite subset A0 ⊆ A. By hypothesis every finite
subset A0 ⊆ A has a model and every such model will satisfy ¬φ. Hence, A0 ̸|= φ holds for every finite subset. By
definition, A ̸|= φ implies that there exists a model of A and the claim follows. □

The compactness theorem shows the existence of interesting models. For example, suppose a first-order lan-
guage LR and an axiomatic system AR that attempts to axiomatize the real numbers. Note that LR is first-order,
so as we are about to prove, there will be models of AR that are not isomorphic to R. However, a famous result
of one dimensional real analysis states that R is the only field (up to isomorphism) satisfying the usual axioms of
the real numbers. Thus, at least one of those axioms must not be expressible in first-order languages. It is easy
to spot the only non first-order axiom: The axiom assuring completeness, i.e. the axiom that every non-empty
subset of R with a lower bound has a greatest lower bound. Instead of using the usual axioms, we choose AR
to be the set of all first-order sentences true in R. In order to do so, we introduce a constant for every real num-
ber {cr | r ∈ R}. Next, we extend this system by once again introducing a new constant ε ∈ CR and adding the set of
formulas {ε < cr | r > 0} ∪ {c0 < ε} to our axiomatic system. Let us call this extension A∗R. Since every finite subset
of A∗R is modeled by the real numbers R (when choosing a suitable interpretation ε 7→ 1

n , n ∈ N big enough), the
compactness theorem implies the existence of a model which satisfies every axiom in A∗R. This justifies the idea of
an infinitesimal number ε that is smaller than every positive real number, yet bigger than 0. By construction, every
true first-order sentence of the real numbers still applies in such a model. In a similar manner one can achieve a
model of the natural numbers that satisfies every axiom of APA but furthermore features a non-standard number α0
that is bigger than every standard natural number n < α0.

Theorem 1.3.13. (Upward Löwenheim–Skolem Theorem (weak version)) Let L be a first-order language and A a
corresponding axiomatic system. If there exists an infinite model M = ⟨M, I⟩ |= A of A, then there exist arbitrarily
large models of A.

Proof. This proof follows [Ges13, pp. 16–19]. Let κ := |M| be the cardinality of M, and let N be an arbitrarily large
set such that |N | ≥ κ. We start by extending our language L1 := L ∪ {cn | n ∈ N} with a set of new constants – one
for each element in N. Next, we extend our axiomatic system A1 := A∪{¬(cn = cm) | n,m ∈ N, n ̸= m} accordingly
to an axiomatic system in L1.

In order to apply the completeness theorem, let A0 ⊆ A1 be a finite subset of A1. Then there exists a finite
subset N0 ⊆ N of N such that A0 ⊆ A ∪ {¬(cn = cm) | n,m ∈ N0, n ̸= m}. We can extend M to a structure M0
for the language L1 by setting M0 = M and extending I to I0 as follows: We assign each cn, n ∈ N0, to pairwise
different elements in M0 and extend this change to the recursive rules of Definition 1.3.3. It is possible to assign
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pairwise different elements of M0 to the finitely many constants cn because M0 is infinite by hypothesis. This yields
a model M0 := ⟨M0, I0⟩ of A0.

We have shown that every finite subset of A1 has a model, which, according to the compactness theorem, implies
the existence of a model M1 := ⟨M1, I1⟩ |= A1 of A1. By construction, we have {I1(cn) | n ∈ N} ⊆ M1 as well
as I1(cn) ̸= I1(cm) for all n ̸= m. This implies |M1| ≥ |N |. By setting M′ := ⟨M′ := M1, I′ := I1|L⟩ we obtain a
model of A for the language L. Since M′ = M1 has a cardinality bigger than or equal to |N | and because N was
chosen of arbitrary size, the claim of this theorem follows. □

Corollary 1.3.14. Let L be a first-order language and A an axiomatic theory in L. If A is satisfiable, then there
exist non-isomorphic models of A.

This proves our claim that we cannot axiomatize the natural numbers – or any infinitary concept – within
first-order logic in a way that characterizes that concept up to isomorphism. We also have a related result:

Theorem 1.3.15. (Downward Löwenheim–Skolem Theorem) Let L be a first-order language and A a corresponding
satisfiable axiomatic system. Let κ be an infinite cardinal such that |A| ≤ κ. Then there exists a model M = ⟨M, I⟩ of
cardinality |M| ≤ κ.

Proof. For a detailed proof see [Bar77, pp. 23 – 33]. The proof is a corollary of the same lemma that Barwise uses
to prove the compactness theorem, see Theorem 1.3.10. □

The downward Löwenheim–Skolem theorem shows a seemingly paradox side of model theory. Let LZFC be
the first-order language and AZFC the corresponding axiomatic system that formulates set theory for first-order
languages. Set theory is constructed in such a way, that one can find the natural numbers N as well as their power
set P(N) in every model. Since the set P(N) has uncountably many elements, it seems that there cannot be countable
models of AZFC. Theorem 1.3.15 on the other hand states that if AZFC is satisfiable at all, it also has a countable
model. We have every reason to believe in the existence of a model of AZFC, which thereby seems to lead to a
contradiction known as Skolem’s paradox. It can be resolved by understanding that the notions of cardinality can be
different from inside the model and when looked at from the outside.

By combining the upward and downward version of the Löwenheim–Skolem theorem we get:

Corollary 1.3.16. (Löwenheim–Skolem Theorem) Let L be a first-order language and A a corresponding satisfiable
axiomatic system. Let κ be an infinite cardinal such that |A| ≤ κ. Then for every infinite cardinal η ≥ κ there exists a
model M = ⟨M, I⟩ of cardinality |M| = η.

Proof. Let us revisit the proof of the upward Löwenheim–Skolem theorem, see Theorem 1.3.13. We use the
same notation and choose N as a set of cardinality η. In the proof, we showed that the extended axiomatic
system A1 ⊇ A in L1 has a model M1. By applying the downward Löwenheim–Skolem theorem to A1, we get a
model M′1 = ⟨M

′
1, I
′
1⟩ with cardinality

∣∣∣M′1∣∣∣ ≤ |A1|. Note that since κ ≤ η = |N |, we have:

|N | ≤ |A1| = |A ∪ {¬(cn = cm) | n,m ∈ N, n ̸= m}| ≤ κ + |N |2 = |N | .

The last equality uses the axiom of choice. For a reference, see e.g. [Zer10]. Thus, the axiomatic system A1
has cardinality |N | = η. On the other hand we also proved that, by construction, every model of A1 has at least
cardinality |N | = η. It follows that the so obtained model M′1 of A1 has exactly the desired cardinality. The claim
follows, by reducing M′1 to a model of A for the language L in the same way we did at the end of the proof of
Theorem 1.3.13. □
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1.4 Logical Axioms and Rules of Inference

So far, we have introduced the idea of languages, along with the rules for forming terms, formulas, and sentences
correctly. Then we defined a way to interpret these statements by using metalogics to study models of certain
systems. In this section we will define the notion of proofs.

Notation 2. (Rules of inference) To define which deductions can be made, we agree on a new notation: Let L be a
first-order language and φ1, . . . , φn, ψφ1,...,φn some formulas in L, where the metavariable ψφ1,...,φn denotes a formula
dependent on φ1, . . . , φn. We call

φ1
...
φn

ψφ1,...,φn

an inference rule and say that the formula ψφ1,...,φn can be obtained by φ1, . . . , φn.

Rules of inference are the justification for any kind of deduction in proofs. Without them, proving anything but
axioms would be impossible.

Definition 1.4.1. The following list of inference rules will be denoted as IH:

Modus ponens (MP):
φ

φ→ ψ

ψ
, Generalisation (G):

φ

∀ξ φ
. (5)

The variable ξ must not occur freely in any formula χ ∈ A of the corresponding axiomatic system A.

Modus ponens formalizes the intuitive idea that it should be a proof of ψ to prove φ as well as φ → ψ. The
generalization rule formalizes the idea that if something is proved for any x (“ Let x be an arbitrary...”) this should
be a proof that the statement holds for all x. The restriction that x cannot be a free variable in any formula φ ∈ A is
redundant in our case, since we only allowed sentences as axioms in Definition 1.3.1. If we were to extend this
definition to general formulas, this restriction would be necessary, since the occurrence of a free variable x in an
axiom would prevent us from choosing x arbitrarily.

For example, imagine the formula (x = 0) as an additional axiom in APA and φ = ∃y (x = 2 × y). Of course φ
holds because we can use the axiom to prove that x will always be 0 and therefore φ trivially holds with y = 0. But
this should not prove that the formula ∀x ∃y (x = 2 × y) holds.

In addition to inference rules, we allow some logical axioms. For this purpose we introduce a new notation.

Notation 3. Let φ be a formula, ξ a variable and t a term. By

φ {ξ 7→ t} =: φ(t) ,

we denote the substitution of all free occurrences of ξ in φ by t. Note that if ξ is not free in φ, φ {ξ 7→ t} = φ. We
can use the abbreviation φ(t) if it is clear which variable we will replace with t. If t contains a variable bound by a
quantifier in φ, we say that there is a collision in the substitution. A substitution is called collision-free if it has no
collision. For example, the following substitution is collision-free:

φ(x) = ∃y (x < y) , t = S(S(z)) { φ {x 7→ t} = ∃y (S(S(z)) < y) ,

while this on is not:

φ(x) = ∃y (x < y) , t = S(S(y)) { φ {x 7→ t} = ∃y (S(S(y)) < y) .

11



If we want to substitute several terms t1, . . . , tk for variables ξ1, . . . , ξk, we write

φ{ξ1, . . . , ξk 7→ t1, . . . , tk} := φ {ξ1 7→ t1} . . . {ξk 7→ tk} ,

for subsequently applying k substitutions.

We will use the following scheme as logical axioms:

Definition 1.4.2. Let L be a first-order language. The following list of logical axioms will be denoted as AH
Lo:

φ ∨ φ→ φL1. ψ→ φ ∨ ψL2.

φ ∨ ψ→ ψ ∨ φL3. φ ∨ (ψ ∨ χ)→ ψ ∨ (φ ∨ χ)L4.

(ψ→ χ)→ (φ ∨ ψ→ φ ∨ χ)L5. ∀ξ φ→ φ {ξ 7→ t}L6.

∀x (φ ∨ ψ)→ (φ ∨ ∀x ψ)L7. ∀ξ (ξ = ξ)L8.

∀ξ ∀ζ
[
ξ = ζ →

(
φ(ξ)→ φ(ζ)

)]
L9. [∀ξ (φ→ ψ)]→ [∀ξ φ→ ∀ξ ψ]L10.

For Axiom L6, the substitution has to be collision-free and for L7, the variable ξ must not appear (freely) in φ. As
usual the above axioms are to be interpreted as axiom schemes, i.e. the actual list of axioms is infinite.

Two remarks on Definition 1.4.1 and 1.4.2:

• The first five axioms were introduced by Russell and Whitehead in their famous work “Principia Mathematica”,
see [WR10, Axioms *1.2–*1.6, pp. 100–101]. Axiom L4 has been shown not to be independent of the other
axioms in [Ber26], so we could easily omit it. Note that the choice of logical axioms (L1 - L3, L5 - L9)
and rules of inference were inspired by Gödel as the basis of an important theorem which we will discuss in
the next section, see [Göd29]. However, Gödel used a different formulation of first-order languages which
technically does not agree with our definitions. He allowed second-order variables with the restriction that
they cannot be quantified over. For the definition of second-order formulas, we refer to Section 1.8 and for a
detailed introduction to Gödel’s version of first-order logic to Hilbert and Ackermann, see [HA38]. The last
axiom is adopted from [Rau09, Chapter 3.6].

• There are numerous variants of first-order predicate logic that employ different inference rules or logical
axioms. The theorems we will discuss in this thesis will be so robust that the precise formulation is mostly a
technical matter. As a result, the reader may regard the definitions used as an historical example.

Now that we have established the basic building blocks, we can define what exactly a formal proof of a
formula φ should be. Intuitively, it should explain exactly how to derive φ by applying inference rules to some
axioms. Furthermore, this process should be algorithmically verifiable. There are several ways to define such
systems. For our purposes, Hilbert-style calculus is well suited:

Notation 4. (Hilbert-style proof). A Hilbert-style proof is a finite list of formulas, where each line is either an axiom
or the result of applying an inference rule to previous lines. The last line is the statement we proved. A proof of the
formula φ with n steps has the following form:

Proof of: φ

1. Some formula Reference to the axiom used
2. Some formula Reference to the axiom or inference rule used
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Proof of: φ (continuation)
... . . . . . .
n. φ Reference to the axiom or inference rule used

To keep these proofs concise, we will introduce abbreviations. In addition, we will use extra lines to translate
between our formula notations, such as the definitions for ∧,→ (see Notation 1). This translation, however, occurs
only in the meta language, and these lines are omitted in the actual proof.

Definition 1.4.3. A set of inference rules I together with a set of logical Axioms ALo in the context of a proof
system is called deductive system.

Our set of inference rules and logical axioms defines a deductive system. We denote it as H =
(
AH

Lo, I
H) and

call it Hilbert-style deductive system.

Notation 5. (Provability) Let T = (L,A) be a formal theory, D a deductive system and φ a formula in L. We call φ
provable in T iff there exists a (finite) proof of φ using D. In this case we write:

T ⊢ φ .

Unless stated otherwise, we will consider a formal proof to be a proof in Hilbert-style. Nonetheless, there are
many other proof systems. Another common method is natural deduction. In this system, a proof of φ would be a
tree of formulas, where each leaf is an axiom and the only root is φ. Each formula in this tree can be derived by
applying a rule of inference to its children. The method of natural deduction arose because Hilbert-style proofs can
quickly feel unnatural. On the other hand, the Hilbert system is designed to be very minimalistic, which can be
useful for proving metatheorems.

To conclude this section, we highlight a famous result that will be relevant later:

Theorem 1.4.4. (Deduction theorem) Let T = (L,A) be a theory and φ, ψ formulas in L such that φ is a sentence.
Assume the Hilbert-style calculus H as a deductive system. We have:

T + φ :=
(
L,A ∪ {φ}

)
⊢ ψ =⇒ T ⊢ (φ→ ψ)

Proof. The theorem can be shown by induction over the number of proof steps and case distinction in the inductive
step. An explicit proof can be found, for example, in [Men97]. □

1.5 Examples of Formal Proofs

Recall the definition of Peano arithmetic in Example 1.3.9. Let’s call the corresponding theory TPA. To conduct
formal proofs, we will use the Hilbert-style deductive system H. Throughout the section, note that there is still a
significant difference between the formal proofs and our versions due to abbreviations and notation.

Lemma 1.5.1. (Existential generalization) For any formula φ, any variable ξ and for any term t such that
substituting t for ξ in φ will not cause any collisions, we have:

φ {ξ 7→ t} → ∃ξ φ . (6)

Proof. This follows immediately from logical axiom L6:

Proof of: φ {ξ 7→ t} → ∃ξ φ
1. ∀ξ ¬φ→ ¬φ {ξ 7→ t} logical axiom L6
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Proof of: φ {ξ 7→ t} → ∃ξ φ (continuation)
2. ¬(∀ξ ¬φ) ∨ ¬φ {ξ 7→ t} Notation (→)
3. [¬(∀ξ ¬φ) ∨ ¬φ {ξ 7→ t}]→ [¬φ {ξ 7→ t} ∨ ¬(∀ξ ¬φ)] Logical axiom L3
4. ¬φ {ξ 7→ t} ∨ ¬(∀ξ ¬φ) MP(2,3)
5. φ {ξ 7→ t} → ¬(∀ξ ¬φ) Notation (→)
6. φ {ξ 7→ t} → ∃ξ φ Notation (∃) □

Lemma 1.5.2. (Transitivity of implication) Implications are transitive, i.e. we have:

TR1. (φ→ ψ)→
(
(ψ→ χ)→ (φ→ χ)

)
TR2. (ψ→ χ)→

(
(φ→ ψ)→ (φ→ χ)

)
Proof. The following list gives a proof of TR2:

Proof of: (ψ→ χ)→
(
(φ→ ψ)→ (φ→ χ)

)
1. (ψ→ χ)→

(
(¬φ ∨ ψ)→ (¬φ ∨ χ)

)
Logic ax. L5

2. (ψ→ χ)→
(
(φ→ ψ)→ (φ→ χ)

)
Not. (→)

This immediately gives a proof of TR1:

Proof of: (φ→ ψ)→
(
(ψ→ χ)→ (φ→ χ)

)
1. (ψ→ χ)→

(
(φ→ ψ)→ (φ→ χ)

)
TR2

2. ¬(ψ→ χ) ∨
(
¬(φ→ ψ) ∨ (φ→ χ)

)
Not. (→)

3.
[
¬(ψ→ χ) ∨

(
¬(φ→ ψ) ∨ (φ→ χ)

)]
→
[
¬(φ→ ψ) ∨

(
¬(ψ→ χ) ∨ (φ→ χ)

)]
Logic ax. L4

4. ¬(φ→ ψ) ∨
(
¬(ψ→ χ) ∨ (φ→ χ)

)
MP(2, 3)

5. (φ→ ψ)→
(
(ψ→ χ)→ (φ→ χ)

)
Not. (→)

□

Recall that for a correct proof in Hilbert style, every line should be an axiom or the result of an inference rule
applied to lines above. For that reason, the proof of TR1 is an abbreviation of the actual proof in which we had to
first repeat the proof of TR2 before stating its result. To make proofs more readable, we will allow this kind of
abbreviation in our proofs. We will also allow the following rule of inference:

Specialisation (S):
∀ξ1 ∀ξ2 . . .∀ξk φ(ξ1, . . . , ξk)

φ{ξ1, . . . , ξk 7→ t1, . . . , tk}
, (7)

for successive collision-free substitutions, which can be easily proved for any k, by repeatedly applying logical
axiom L6. In a similar vein, we will allow this rule of inference:

Generalisation (G):
φ

∀ξ1 ∀ξ2 . . .∀ξk φ(ξ1, . . . , ξk)
(8)

This is simply an abbreviation of repeatedly applying the generalisation rule G, introduced in Equation (5).

Lemma 1.5.3. (Symmetry of “=”) The equals sign is a symmetric relation. That is, we have:

∀x∀y (x = y→ y = x) .

Proof. For simplicity, define φx(z) := φ(z, y) := (z = x). We have:
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Proof of: ∀x ∀y (x = y→ y = x)
1. ∀x ∀y

(
x = y→ (φx(x)→ φx(y))

)
Logical ax. L9

2. x = y→ (φx(x)→ φx(y)) S(1)
3. ¬(x = y) ∨ (¬φx(x) ∨ φx(y)) Not. (→)
4.
(
¬(x = y) ∨

(
¬φx(x) ∨ φx(y)

))
→
(
¬φx(x) ∨

(
¬(x = y) ∨ φx(y)

))
Logical ax. L4

5. ¬φx(x) ∨
(
¬(x = y) ∨ φx(y)

)
MP(3, 4)

6. φx(x)→ (x = y→ φx(y)) Not. (→)
7. x = x→ (x = y→ y = x) Def. (φx)
8. ∀x (x = x) Logical ax. L8
9. x = x S(8)

10. x = y→ y = x MP(9, 7)
11. ∀x ∀y (x = y→ y = x) G(10) □

Lemma 1.5.4. (Extensionality of S(•)) The successor function is extensional, i.e. we have:

∀x ∀y (x = y→ S(x) = S(y)).

Proof. We use the same trick as in Lemma 1.5.3 by defining: φx(z) := (S(x) = S(z)) and get:

Proof of: ∀x ∀y (x = y→ S(x) = S(y))
1. ∀x ∀y

(
x = y→ (φx(x)→ φx(y))

)
Logical ax. L9

2. x = y→ (φx(x)→ φx(y)) S(1)
3. ¬(x = y) ∨ (¬φx(x) ∨ φx(y)) Not. (→)
4.
(
¬(x = y) ∨ (¬φx(x) ∨ φx(y))

)
→
(
¬φx(x) ∨ (¬(x = y) ∨ φx(y))

)
Logical ax. L4

5. ¬φx(x) ∨ (¬(x = y) ∨ φx(y)) MP(3,4)
6. φx(x)→ (x = y→ φx(y)) Not. (→)
7. S(x) = S(x)→ (x = y→ S(x) = S(y)) Def. (φx)
8. ∀x (x = x) Logical ax. L8
9. S(x) = S(x) S(8)

10. x = y→ S(x) = S(y) MP(9, 7)
11. ∀x ∀y (x = y→ S(x) = S(y)) G(10) □

Lemma 1.5.5. (Double negation) Negations are self inverse operations, i.e. we have:

DN1. φ→ ¬(¬φ) DN2. ¬(¬φ)→ φ

Proof. We start with DN1:

Proof of: φ→ ¬(¬φ)
1. ¬φ→ ¬(¬φ) ∨ ¬φ Logical ax. L2
2. ¬(¬φ) ∨ ¬φ→ ¬φ ∨ ¬(¬φ) Logical ax. L3
3.
[
¬φ→ ¬(¬φ) ∨ ¬φ

]
→
[(
¬(¬φ) ∨ ¬φ→ ¬φ ∨ ¬(¬φ)

)
→
(
¬φ→ ¬φ ∨ ¬(¬φ)

)]
TR1

4.
(
¬(¬φ) ∨ ¬φ→ ¬φ ∨ ¬(¬φ)

)
→
(
¬φ→ ¬φ ∨ ¬(¬φ)

)
MP(1,3)

5. ¬φ→ ¬φ ∨ ¬(¬φ) MP(2, 4)
6. ¬(¬φ) ∨

(
¬φ ∨ ¬(¬φ)

)
Not. (→)

7.
(
¬(¬φ) ∨

(
¬φ ∨ ¬(¬φ)

))
→
(
¬φ ∨

(
¬(¬φ) ∨ ¬(¬φ)

))
Logical ax. L4
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Proof of: φ→ ¬(¬φ) (continuation)
8. ¬φ ∨

(
¬(¬φ) ∨ ¬(¬φ)

)
MP(6, 7)

9. φ→ ¬(¬φ) ∨ ¬(¬φ) Not. (→)
10. ¬(¬φ) ∨ ¬(¬φ)→ ¬(¬φ) Logical ax. L1
11.

[
φ→ ¬(¬φ) ∨ ¬(¬φ)

]
→
[(
¬(¬φ) ∨ ¬(¬φ)→ ¬(¬φ)

)
→
(
φ→ ¬(¬φ)

)]
TR1

12.
(
¬(¬φ) ∨ ¬(¬φ)→ ¬(¬φ)

)
→
(
φ→ ¬(¬φ)

)
MP(9, 11)

13. φ→ ¬(¬φ) MP(10, 12)

Using the above result we can prove DN2:

Proof of: ¬(¬φ)→ φ

1. ¬φ→ ¬(¬(¬φ)) DN1
2.
(
¬φ→ ¬(¬(¬φ))

)
→
(
(φ ∨ ¬φ)→ (φ ∨ ¬(¬(¬φ)))

)
Logical ax. L5

3. (φ ∨ ¬φ)→ (φ ∨ ¬(¬(¬φ))) MP(1,2)
4. φ→ φ ∨ φ Logical ax. L2
5. φ ∨ φ→ φ Logical ax. L1
6. (φ→ φ ∨ φ)→

(
(φ ∨ φ→ φ)→ (φ→ φ)

)
TR1

7. (φ ∨ φ→ φ)→ (φ→ φ) MP(4, 6)
8. φ→ φ MP(5,7)
9. ¬φ ∨ φ Not. (→)

10. ¬φ ∨ φ→ φ ∨ ¬φ Logical ax. L3
11. φ ∨ ¬φ MP(9, 10)
12. φ ∨ ¬(¬(¬φ)) MP(11, 3)
13. φ ∨ ¬(¬(¬φ))→ ¬(¬(¬φ)) ∨ φ Logical ax. L3
14. ¬(¬(¬φ)) ∨ φ MP(12, 13)
15. ¬(¬φ)→ φ Not. (→) □

Note that we also proved the law of excluded middle as an interim result:

LEM : ¬φ ∨ φ .

A pattern that wastes a lot of space in the proof above is to formulate TR1 or TR2 and then apply modus ponens
twice. Let us introduce an inference rule to abbreviate this in the future:

Transitivity (TR):
φ→ ψ
ψ→ χ

φ→ χ
(9)

This can easily be proved:

Proof of: TR
1. φ→ ψ precondition
2. ψ→ χ precondition
3. (φ→ ψ)→ ((ψ→ χ)→ (φ→ χ)) TR1
4. (ψ→ χ)→ (φ→ χ) MP(1,3)
5. φ→ χ MP(2,4)
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In a formally correct proof we would still have to do all the steps, but for the coming proofs we will use the
above abbreviation. In a similar vein, we can introduce the following rules of inference:

Associativity (AS):
φ ∨ (ψ ∨ χ)

ψ ∨ (φ ∨ χ)
,

which, of course, is just an abbreviation for applying logical axiom L4 and modus ponens. This also yields

Associativity (AS):
φ→ (ψ→ χ)

ψ→ (φ→ χ)
,

by applying the definition of “→”.

Lemma 1.5.6. The AND operation satisfies:

φ→ (ψ→ (φ ∧ ψ))

Proof.

Proof of: φ→ (ψ→ (φ ∧ ψ))
1. ¬(¬φ ∨ ¬ψ) ∨ (¬φ ∨ ¬ψ) LEM
2. ¬φ ∨

(
¬(¬φ ∨ ¬ψ) ∨ ¬ψ

)
AS(1)

3. φ→
(
¬(¬φ ∨ ¬ψ) ∨ ¬ψ

)
Not. (→)

4.
(
¬(¬φ ∨ ¬ψ) ∨ ¬ψ

)
→
(
¬ψ ∨ ¬(¬φ ∨ ¬ψ)

)
Logical ax. L3

5. φ→
(
¬ψ ∨ ¬(¬φ ∨ ¬ψ)

)
TR(3, 4)

6. φ→
(
ψ→ ¬(¬φ ∨ ¬ψ)

)
Not. (→)

7. φ→ (ψ→ (φ ∧ ψ)) Not. (∧) □

This can be helpful in proofs to state φ ∧ ψ when having already proved φ and ψ. To conclude this chapter, we
will show that addition in the natural numbers is commutative. We need the following auxiliary lemma to do so:

Lemma 1.5.7. The following formula holds:

∀k ∀n (k + S(n) = S(k) + n)

Proof.

Proof of: ∀k ∀n (k + S(n) = S(k) + n)
1. ∀x ∀y (x + S(y) = S(x + y)) Peano ax. PA4
2. k + S(0) = S(k + 0) S(1)
3. ∀x (x + 0 = x) Peano ax. PA3
4. k + 0 = k S(3)
5. ∀x ∀y

[
x = y→

(
k + S(0) = S(x)→ k + S(0) = S(y)

)]
Logical ax. L9

6. k + 0 = k →
(
k + S(0) = S(k + 0)→ k + S(0) = S(k)

)
S(5)

7. k + S(0) = S(k + 0)→ k + S(0) = S(k) MP(4,6)
8. k + S(0) = S(k) MP(2,7)
9. ∀x ∀y (x = y→ y = x) Lemma 1.5.3

10. k + S(0) = S(k)→ S(k) = k + S(0) S(9)
11. S(k) = k + S(0) MP(8,10)
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Proof of: ∀k ∀n (k + S(n) = S(k) + n) (continuation)
12. S(k) + 0 = S(k) S(3)
13. S(k) + 0 = S(k)→ S(k) = S(k) + 0 S(9)
14. S(k) = S(k) + 0 MP(12, 13)
15. ∀x ∀y

[
x = y→

(
x = S(k) + 0→ y = S(k) + 0

)]
Logical ax. L9

16. S(k) = k + S(0)→
(

S(k) = S(k) + 0→ k + S(0) = S(k) + 0
)

S(15)
17. S(k) = S(k) + 0→ k + S(0) = S(k) + 0 MP(11,16)
18. k + S(0) = S(k) + 0 MP(14,17)
19. ∀x ∀y (x = y→ S(x) = S(y)) Lemma 1.5.4
20. k + S(n) = S(k) + n→ S(k + S(n)) = S(S(k) + n) S(19)
21. k + S(S(n)) = S(k + S(n)) S(1)
22. k + S(S(n)) = S(k + S(n))→ S(k + S(n)) = k + S(S(n)) S(9)
23. S(k + S(n)) = k + S(S(n)) MP(21,22)
24. S(k) + S(n) = S(S(k) + n) S(1)
25. S(k) + S(n) = S(S(k) + n)→ S(S(k) + n) = S(k) + S(n) S(9)
26. S(S(k) + n) = S(k) + S(n) MP(24, 25)
27. ∀x ∀y

[
x = y→

(
x = k + S(S(n))→ y = k + S(S(n))

)]
Logical ax. L9

28. S(k + S(n)) = S(S(k) + n)→
(

S(k + S(n)) = k + S(S(n))→ S(S(k) + n) = k + S(S(n))
)

S(27)

29. S(k + S(n)) = k + S(S(n))→
(

S(k + S(n)) = S(S(k) + n)→ S(S(k) + n) = k + S(S(n))
)

AS(28)
30. S(k + S(n)) = S(S(k) + n)→ S(S(k) + n) = k + S(S(n)) MP(23 ,29)
31. ∀x ∀y

[
x = y→

(
x = S(k) + S(n)→ y = S(k) + S(n)

)]
Logical ax. L9

32. S(S(k) + n) = k + S(S(n))→
(

S(S(k) + n) = S(k) + S(n)→ k + S(S(n)) = S(k) + S(n)
)

S(31)

33. S(k + S(n)) = S(S(k) + n)→
(

S(S(k) + n) = S(k) + S(n)→ k + S(S(n)) = S(k) + S(n)
)

TR(30,32)

34. S(S(k) + n) = S(k) + S(n)→
(

S(k + S(n)) = S(S(k) + n)→ k + S(S(n)) = S(k) + S(n)
)

AS(33)
35. S(k + S(n)) = S(S(k) + n)→ k + S(S(n)) = S(k) + S(n) MP(26,34)
36. k + S(n) = S(k) + n→ k + S(S(n)) = S(k) + S(n) TR(20,35)
37. φk(n) := (k + S(n) = S(k) + n) Def.
38. φk(0) see line 18
39. φk(n)→ φk(S(n)) see line 36
40. ∀n

(
φk(n)→ φk(S(n))

)
G(39)

41. φk(0)→
[
∀n
(
φk(n)→ φk(S(n))

)
→
(
φk(0) ∧ ∀n

(
φk(n)→ φk(S(n))

))]
Lemma 1.5.6

42. ∀n
(
φk(n)→ φk(S(n))

)
→
(
φk(0) ∧ ∀n

(
φk(n)→ φk(S(n))

))
MP(38, 41)

43. φk(0) ∧ ∀n
(
φk(n)→ φk(S(n))

)
MP(40, 42)

44.
[
φk(0) ∧ ∀n

(
φk(n)→ φk(S(n))

)]
→ ∀n φk(n) IND

45. ∀n φk(n) MP(43, 44)
46. ∀n (k + S(n) = S(k) + n) Def. (φk)
47. ∀k ∀n (k + S(n) = S(k) + n) G(46)

□

With these results it is now easy to prove commutativity of addition:

Lemma 1.5.8. (Commutativity of addition) We have, as expected:

∀n ∀k (n + k = k + n)

Proof.
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Proof of: ∀n ∀k (n + k = k + n)
1. ∀x (x + 0 = x) Peano ax. PA3
2. 0 + 0 = 0 S(1)
3. ∀x ∀y (x = y→ S(x) = S(y)) Lemma 1.5.4
4. 0 + r = r → S(0 + r) = S(r) S(3)
5. ∀x ∀y (x + S(y) = S(x + y)) Peano ax. PA4
6. 0 + S(r) = S(0 + r) S(5)
7. ∀x ∀y

[
x = y→

(
0 + S(r) = x→ 0 + S(r) = y

)]
Logical ax. L9

8. S(0 + r) = S(r)→
(
0 + S(r) = S(0 + r)→ 0 + S(r) = S(r)

)
S(7)

9. 0 + S(r) = S(0 + r)→
(

S(0 + r) = S(r)→ 0 + S(r) = S(r)
)

AS(8)
10. S(0 + r) = S(r)→ 0 + S(r) = S(r) MP(6, 9)
11. 0 + r = r → 0 + S(r) = S(r) TR(4, 10)
12. φ(r) := (0 + r = r) Def.
13. φ(0) see line 2
14. φ(r)→ φ(S(r)) see line 11
15. ∀r (φ(r)→ φ(S(r))) G(14)
16. φ(0)→

[
∀r
(
φ(r)→ φ(S(r))

)
→
(
φ(0) ∧ ∀r

(
φ(r)→ φ(S(r))

))]
Lemma 1.5.6

17. ∀r
(
φ(r)→ φ(S(r))

)
→
(
φ(0) ∧ ∀r

(
φ(r)→ φ(S(r))

))
MP(13,16)

18. φ(0) ∧ ∀r
(
φ(r)→ φ(S(r))

)
MP(15,17)

19.
[
φ(0) ∧ ∀r

(
φ(r)→ φ(S(r))

)]
→ ∀r φ(r) IND

20. ∀r φ(r) MP(18, 19)
21. φ(n) S(20)
22. 0 + n = n Def. (φ)
23. n + 0 = n S(1)
24. ∀x ∀y (x = y→ y = x) Lemma 1.5.3
25. 0 + n = n→ n = 0 + n S(24)
26. n + 0 = n→ n = n + 0 S(24)
27. n = 0 + n MP(22 ,25)
28. n = n + 0 MP(23, 26)
29. ∀x ∀y

[
x = y→

(
x = 0 + n→ y = 0 + n

)]
Logical ax. L9

30. n = n + 0→
(
n = 0 + n→ n + 0 = 0 + n

)
S(29)

31. n = 0 + n→ n + 0 = 0 + n MP(28, 30)
32. n + 0 = 0 + n MP(27, 31)
33. k + S(n) = S(k + n) S(5)
34. n + S(k) = S(n + k) S(5)
35. k + S(n) = S(k + n)→ S(k + n) = k + S(n) S(24)
36. n + S(k) = S(n + k)→ S(n + k) = n + S(k) S(24)
37. S(k + n) = k + S(n) MP(33, 35)
38. S(n + k) = n + S(k) MP(34, 36)
39. n + k = k + n→ S(n + k) = S(k + n) S(3)
40. ∀x ∀y

[
x = y→

(
x = n + S(k)→ y = n + S(k)

)]
Logical ax. L9

41. S(n + k) = S(k + n)→
(

S(n + k) = n + S(k)→ S(k + n) = n + S(k)
)

S(40)

42. S(n + k) = n + S(k)→
(

S(n + k) = S(k + n)→ S(k + n) = n + S(k)
)

AS(41)
43. S(n + k) = S(k + n)→ S(k + n) = n + S(k) MP(38, 42)
44. n + k = k + n→ S(k + n) = n + S(k) TR(39, 43)
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Proof of: ∀n ∀k (n + k = k + n) (continuation)
45. S(k + n) = k + S(n)→

(
S(k + n) = n + S(k)→ k + S(n) = n + S(k)

)
S(40)

46. S(k + n) = n + S(k)→ k + S(n) = n + S(k) MP(37, 45)
47. n + k = k + n→ k + S(n) = n + S(k) TR(44, 46)
48. k + S(n) = n + S(k)→ n + S(k) = k + S(n) S(24)
49. n + k = k + n→ n + S(k) = k + S(n) TR(47, 48)
50. ∀k ∀n (k + S(n) = S(k) + n) Lemma 1.5.7
51. k + S(n) = S(k) + n S(50)
52. ∀x ∀y

[
x = y→

(
n + S(k) = x→ n + S(k) = y

)]
Logical ax. L9

53. k + S(n) = S(k) + n→
(
n + S(k) = k + S(n)→ n + S(k) = S(k) + n

)
S(52)

54. n + S(k) = k + S(n)→ n + S(k) = S(k) + n MP(51,53)
55. n + k = k + n→ n + S(k) = S(k) + n TR(49, 54)
56. ψ(k) := (n + k = k + n) Def.
57. ψ(0) see line 32
58. ψ(k)→ ψ(S(k)) see line 55
59. ∀k

(
ψ(k)→ ψ(S(k))

)
G(58)

60. ψ(0)→
[
∀k
(
ψ(k)→ ψ(S(k))

)
→
(
ψ(0) ∧ ∀k

(
ψ(k)→ ψ(S(k))

))]
Lemma 1.5.6

61. ∀k
(
ψ(k)→ ψ(S(k))

)
→
(
ψ(0) ∧ ∀k

(
ψ(k)→ ψ(S(k))

))
MP(57, 60)

62. ψ(0) ∧ ∀k
(
ψ(k)→ ψ(S(k))

)
MP(59, 61)

63.
[
ψ(0) ∧ ∀k

(
ψ(k)→ ψ(S(k))

)]
→ ∀k ψ(k) IND

64. ∀k ψ(k) MP(62, 63)
65. ∀k (n + k = k + n) Def.
66. ∀n ∀k (n + k = k + n) G(65) □

The formally correct proof, that is, if we write out the abbreviations and omit lines for notations and definitions,
has 342 steps. However, it is probably possible to find a shorter proof. Therefore, it would be an interesting
metamathematical question to ask for the minimum number of steps needed to prove this theorem.

1.6 Gödel’s Completeness Theorem

So far we have not discussed the connection between proof and truth. Given a theory T = (L,A) and a deductive
system D = (ALo, I), a proof of φ should imply that φ is true in every realization that satisfies the axioms of A. In
other words, φ should be a semantic consequence of A.

Definition 1.6.1. (Soundness of deductive systems) Let L be a fixed first-order language and D = (ALo, I) a
deductive system. We call D sound iff for every theory T = (L,A) and every sentence φ in L, the following holds:

T ⊢ φ =⇒ T |= φ .

We define T |= φ:⇐⇒ A |= φ and call φ a semantic consequence of T.

Conversely, one could ask if every semantic consequence φ of T is provable in T:

Definition 1.6.2. (Completeness of deductive systems and formal theories) Let T = (L,A) be a formal theory and
D = (ALo, I) a deductive system. We call D complete iff for every sentence φ in L,

|= φ =⇒ ALo ⊢ φ .
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Moreover, we call T complete iff for every formula φ in L the following holds:

T |= φ =⇒ T ⊢ φ .

It is desirable to have a sound and complete system. That way, proven statements will be true, and true statements
will be provable. In the case of first-order logic, both are possible:

Lemma 1.6.3. (Soundness Lemma) Let D = (ALo, I) be a deductive system with the following properties:

• all logical axioms are tautologies: |= Ψ, for every Ψ ∈ ALo

• the inference rules are truth preserving: Given a structure S with assignment s, IR(φ1, . . . , φn)
∣∣∣
V←s is

guaranteed to be true for any inference rule IR ∈ I with n inputs, as long as φi
∣∣∣
V←s is true for all i.

In this case, D is sound.

Proof. Let T = (L,A) be some theory and the sequence (Ψ1, . . . ,Ψn) a proof in T. We want to show that T |= Ψn.
Our meta-proof is by induction over n: For the base case n = 1, Ψn = Ψ1 must be an axiom, so either Ψn ∈

ALo or Ψn ∈ A. In the first case, T |= Ψn, since Ψn ∈ ALo is a tautology. In the second case, note that T |=
Ψn ⇐⇒ A |= Ψn. The right side is trivial: If all axioms of A (including Ψn) are true in some structure, then
Ψn is also true in that structure. For the step case n 7→ n + 1, consider some proof (Ψ1, . . . ,Ψn,Ψn+1). By the
induction hypothesis, T |= Ψi for all i ≤ n. Either Ψn+1 ∈ ALo ∪A and T |= Ψn+1 like we showed in the base case.
Otherwise, Ψn+1 is the result of applying a truth-preserving inference rule to some logical consequences of T and
thus T |= Ψn+1. □

Therefore, to ensure soundness, it is sufficient to verify that all logical axioms are tautologies (true in every
possible world) and the rules of inference cannot lead to a false conclusion if only true propositions have been used.
This is the best we can hope for, and it is easy to confirm that H satisfies these requirements.

Theorem 1.6.4. (Gödel’s Completeness Theorem, Original Version) Let L be a formal language. The Hilbert-style
deductive system H is complete. In signs:

|= φ =⇒ ALo ⊢ φ ,

for every formula in L.

Proof. Gödel originally proved the theorem in 1929 as part of his dissertation. For a modern proof of this theorem,
see e.g. [Rau09, pp. 121-126]. □

Theorem 1.6.5. (Gödel’s Completeness Theorem, Strong Version) Let L be a formal language and A a correspond-
ing axiomatic system. Together with the Hilbert-style system H, the theory T = (L,A) is complete. In signs:

T |= φ =⇒ T ⊢ φ ,

for every formula in L.

Proof. Let φ be some formula in L such that A |= φ. We have to provide a proof for φ. By Theorem 1.3.11
(compactness theorem), there exists a finite subset {χ1, . . . , χk} = A0 ⊆ A such that A0 |= φ. Define

φ̃ := (χ1 ∧ . . . ∧ χk)→ φ .

Since A0 |= φ, a given structure satisfies φ or does not satisfy all axiom of A0. In both cases φ̃ is true, i.e. |= φ̃.
Thus, by the weak formulation of Gödel’s completeness theorem, ALo ⊢ φ̃. Let us denote this proof as the
sequence (Ψ1, . . . ,Ψn), where Ψn = φ̃. Using Lemma 1.5.6 and applying modus ponens k times, we can construct a
proof (Ψn+1, . . . ,Ψn+s) of χ1 ∧ . . .∧ χk. The sequence (Ψ1, . . . ,Ψn+s, φ) is a valid proof of φ in T. To derive φ in the
last step, we applied modus ponens to Ψn = φ̃ and Ψn+s = χ1 ∧ . . . ∧ χk. □
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Both theorems are tailored to our deductive system H. We could have chosen a different system, and there are
many possible combinations of inference rules and logical axioms that are in fact complete. Since the main idea
remains the same, the proofs can be transferred directly.

1.7 Consequences of Gödel’s Completeness Theorem

We used the compactness theorem to prove the strong version of the completeness theorem. One can also derive the
compactness theorem as a corollary of the completeness theorem:

Lemma 1.7.1. Theorem 1.6.5 (completeness theorem) implies Theorem 1.3.11 (compactness theorem).

Proof. Let L be a first-order language and A ∪ {φ} a set of axioms in L. Assume A |= φ. We have to show that
there exists a finite subset A0 ⊆ A such that A0 |= φ. The completeness theorem states that T = (L,A) ⊢ φ.
Write (Ψ1, . . . ,Ψn) for the corresponding proof. Let A0 := {Ψ1, . . . ,Ψn} ∩A be the (finite) set of axioms used in the
proof. This proof will also be valid in T0 := (L,A0), thus T0 ⊢ φ. Since H is sound, T0 |= φ. By definition, this is
equivalent to A0 |= φ. □

In fact, both theorems are closely related. The compactness theorem states that only a finite part of the axiomatic
system contributes to a semantic consequence. Similarly, only a finite part of the axiomatic system contributes
to a syntactic consequence (proof). The completeness theorem shows that syntactic and semantic consequences
are not only similar, but even equivalent. It creates a bridge between the world of model theory and the world of
formal deduction. Moreover, it shows that the definition of provability depends only on the formal theory and is
independent of the (complete and sound) deduction system we choose.

Definition 1.7.2. (Consistency of theories) Let T be a theory and D a fixed deduction system. We call T inconsistent
if there exists a formula φ such that

T ⊢ φ and T ⊢ ¬φ .

In this case we write T ⊢ ⊥. A theory is called consistent if it is not inconsistent.

The principle of explosion, “ex falso quodlibet”, asserts that any proposition can be deduced from a false
statement. This fact is sometimes integrated as a logical rule:

T ⊢ (⊥ → φ) .

In such systems, the symbol ⊥ is included in the language L and is called bottom. It is understood as a generic “false”
assertion. In our deduction system, we can prove this fact from the existing axioms. Let φ, ϕ be any two formulas:

Proof of: (φ ∧ ¬φ)→ ϕ

1. φ→ ¬(¬φ) DN1
2. ¬φ ∨ ¬(¬φ) Not. (→)
3. (¬φ ∨ ¬(¬φ))→ ¬(¬(¬φ ∨ ¬(¬φ))) DN1
4. ¬(¬(¬φ ∨ ¬(¬φ))) MP(2, 3)
5. ¬(φ ∧ ¬φ) Not. (∧)
6. ¬(φ ∧ ¬φ)→ ϕ ∨ ¬(φ ∧ ¬φ) Logical ax. L2
7. ϕ ∨ ¬(φ ∧ ¬φ) MP(5, 6)
8. ϕ ∨ ¬(φ ∧ ¬φ)→ ¬(φ ∧ ¬φ) ∨ ϕ Logical ax. L3
9. ¬(φ ∧ ¬φ) ∨ ϕ MP(7, 8)

10. (φ ∧ ¬φ)→ ϕ Not. (→)

If our theory is inconsistent, there exists some formula φ such that T ⊢ φ and T ⊢ ¬φ. We can combine these
two proofs to get a proof for φ ∧ ¬φ. Then, by combining this proof with the above argument and applying modus
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ponens, we can construct a proof of ϕ. Since ϕ was an arbitrary formula, our theory proves anything. This is why
inconsistent theories are not useful to work with: Every statement is a theorem. Furthermore, since the underlying
deductive system is sound, they cannot have a realization.

Conversely, one can ask whether consistent theories always have a model. This is indeed the case:

Theorem 1.7.3. (Model existence theorem) Let L be a first-order language and A a corresponding axiomatic
system. Let T = (L,A) be the resulting theory and let D be a sound and complete deductive system, e.g. D = H.
Then, the following two statements are equivalent:

T has a model ⇐⇒ T is consistent

Proof. One direction is trivial: If T has a model, it must be consistent since D is sound. For the other direction, we
will show its contrapositive. Suppose T has no models. Pick any formula φ in L. Trivially, φ and ¬φ will be true in
every model of T, hence T |= φ and T |= ¬φ. By the completeness theorem, this implies T ⊢ φ and T ⊢ ¬φ, which is
equivalent to the inconsistency of T. □

Another consequence of the completeness theorem is that we can easily construct an algorithm that lists all the
semantic consequences of a theory T by listing all the theorems of T. In Chapter 3 we will examine and refine a
specific Turing machine designed for this purpose. Sets that can be enumerated algorithmically are called recursively
enumerable. The original definition of semantic consequence (formulas true in any model of T) did not suggest the
existence of an algorithm for this situation. Consequently, the completeness theorem showed that the set of semantic
consequences is, indeed, recursively enumerable.

1.8 Exploring Second-Order and Higher-Order Logic

So far, we only allowed to quantify over individual variables. Second- and higher-order logic extends on the ideas
of first-order logic, to allow more general quantification. We follow [Vää21].

Second-order languages are defined in a similar way as first-order languages. They use the same alphabet as
before (see Definition 1.2.1), except that the set of variables V = {xi,Ri, Fi | i ∈ N} distinguishes between individual
variables xi, relation variables Ri, and function variables Fi. Accordingly, we extend the domain of the arity function
#(•) to include relation and function variables. Furthermore, the symbol “=” may be excluded. As before, we allow
the use of other symbols as part of our meta-logic if it improves readability.

Definition 1.8.1. (Terms) We define the notion of terms inductively:

• all individual variables xi and constants ci are terms,

• if f is a function symbol with #( f ) = n and t1, ..., tn are terms, then f (t1, ..., tn) is a term,

• if Fi is a function variable with #(Fi) = n and t1, ..., tn are terms, then Fi(t1, ..., tn) is a term.

Definition 1.8.2. (Formulas) We define formulas inductively:

• For a given n-ary relation symbol r, n-ary relation variable Ri and terms t1, ..., tn, we define

(r(t1, ..., tn)) , (Ri(t1, ..., tn))

as (atomic) formulas.

• If φ, ψ are formulas, xi is an individual variable, Ri a relational variable and Fi a function variable, then

(φ ∨ ψ) , (¬φ) , (∀xi φ) , (∀Ri φ) , (∀Fi φ)

are formulas of the language L.
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The notion of free and bound variables is defined like in first-order logic. Sentences are formulas without free
variables. Note that we did not include the equal sign in our language. Instead we can give the following definition:

t1 = t2 := ∀R (R(t1)→ R(t2)) ∧ (R(t2)→ R(t1)) (10)

Intuitively, this formula defines two terms to be equal if they share the same truth value on each relation. It is a
formula that explicitly has to range over all relations and therefore cannot be stated in first-order logic. The principle
that two objects are identical if they share the same properties is called identity of indiscernibles. The converse is
called principle of the indiscernibility of identicals, or Leibniz’s Law. For an interesting discussion of the philosophy
of equality, we recommend [NC22].

Model theory is similar to that for first-order languages. We define structures S = ⟨M, I⟩ as in Definition 1.3.3,
but adopt variable assignment to include the extended notion of terms:

Definition 1.8.3. (Variable assignment) Let L be a second-order language. Let s be a function with domain V

such that individual variables are mapped to an element in M, relation variables with arity n to a subset of Mn and
function variables with arity n to a function Mn → M. We call s an assignment for S and define the notion t

∣∣∣
V←s

for a term t recursively by the following rules:

• If t is a constant, t = ci, then t
∣∣∣
V←s

:= I(t) ∈ M,

• If t is an individual variable, t = xi, then t
∣∣∣
V←s

:= s(t) ∈ M,

• f (t1, ..., tn)
∣∣∣
V←s

:= I( f )(t1
∣∣∣
V←s , . . . , tn

∣∣∣
V←s ) for every function symbol f ∈ F and terms t1, ..., tn,

• Fi(t1, ..., tn)
∣∣∣
V←s

:= s(Fi)(t1
∣∣∣
V←s , . . . , tn

∣∣∣
V←s ) for every function variable Fi ∈ V and terms t1, ..., tn.

As expected, we will interpret formulas in a structure as follows:

Definition 1.8.4. (Semantics of a language L) Let L be a second-order language, S a corresponding structure and s
an assignment for S. We define recursively for terms t1, t2, . . . , tn, formulas φ, ψ and variables xi,Ri, Fi:

• S |= r(t1, ..., tn)
∣∣∣
V←s if and only if

(
t1
∣∣∣
V←s , ..., tn

∣∣∣
V←s

)
∈ I(r),

• S |= Ri(t1, ..., tn)
∣∣∣
V←s if and only if

(
t1
∣∣∣
V←s , ..., tn

∣∣∣
V←s

)
∈ s(Ri),

• S |= (φ ∨ ψ)
∣∣∣
V←s if and only if S |= φ

∣∣∣
V←s or S |= ψ

∣∣∣
V←s ,

• S |= (¬φ)
∣∣∣
V←s if and only if not S |= φ

∣∣∣
V←s ,

• S |= (∀xi φ)
∣∣∣
V←s if and only if for all a ∈ M : S |= φ

∣∣∣
V←s[xi/a] ,

• S |= (∀Ri φ)
∣∣∣
V←s if and only if for all A ⊆ M#Ri : S |= φ

∣∣∣
V←s[Ri/A] ,

• S |= (∀Fi φ)
∣∣∣
V←s if and only if for all functions g: M#Fi → M : S |= φ

∣∣∣
V←s[Fi/g] .

The notion s[ / ] is defined like in Definition 1.3.5.

With this definition (syntactic) relation variables correspond to properties (or sets) in the semantic context.
Consequently, quantifying over them can be interpreted as quantifying over properties. We define axiomatic systems
and models of these systems in the usual way.
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Example 1.8.5. (Natural numbers in second-order logic) Let LN be the second-order language given by C =

{0}, R = ∅ and F = {G}. Define A as {Ψ1,Ψ2,Ψ3}, where:

Ψ1 = ∀x ¬[G(x) = 0]

Ψ2 = ∀x ∀y [G(x) = G(y)→ x = y]

Ψ3 = ∀R
[(

R(0) ∧ ∀x [R(x)→ R(G(x))]
)
→ ∀x R(x)

]
Then, every model M = ⟨M, I⟩ |= A of A is isomorphic to N. More precisely, (M, I(0), I(G)) ∼= (N, 0,+1). Thus, A
defines the natural numbers up to isomorphism. This was not possible in first-order logic due to Theorem 1.3.13
(Löwenheim–Skolem), see Example 1.3.9.

Note that for a fixed structure S, every formula with n free variables corresponds to a set{
(a1, . . . , an) ∈ Mn

∣∣∣∣ S |= φ ∣∣∣V←s[x1/a1]◦...◦s[xn/an]

}
⊆ Mn

Thus, if given an n-ary relation variable R such that s(R) is the above set, we have:

S |= ∀x1 . . .∀xn [R(x1, . . . , xn)↔ φ(x1, . . . , xn)] .

In this sense, formulas can be interpreted as relations. The comprehension principle states that such a variable
always exists:

∃R ∀x1 . . .∀xn [R(x1, . . . , xn)↔ φ(x1, . . . xn)] (11)

Here, φ is any formula in which R is not free. The comprehension principle is usually integrated as one of the
axioms of second-order predicate logic.

Similar to second-order logic, one can define third-, fourth-, . . . order logic by allowing variables for properties
of properties or for properties of properties of properties, and so on. At the semantic level, this nesting carries over
to P(P(M)), P(P(P(M))), and so on – P(•) denoting the power set. Although second- and higher-order languages
are more expressive than first-order languages, this advantage comes at a high price: For instance, with the result of
Gödel’s first incompleteness theorem, it is apparent that the completeness theorem for first-order logic cannot hold
in higher-order logic. Moreover, as we will see in Section 3.3, modern set theory (ZFC) can be defined in first-order
logic and is strong enough to formalize vast areas of modern mathematics.

1.9 Type Theory

We follow [Coq22]. One formulation of Russell’s paradox for second-order systems goes as follows: Define the
formula φ(S ) := ¬S (S ). Then, find a relation R corresponding to this formula and ask whether φ(R) or ¬φ(R) hold.
Both lead to a contradiction. The system in which Russell discovered this antinomy was that of Gottlob Frege at the
beginning of the last century. Although Frege’s system did not allow for the exact construction we have provided, he
was able to derive the contradiction in different ways from one of his basic axioms. In each derivation, the paradox
arises by self-reference. To avoid such vicious circles for his own project, Principia Mathematica, Russell invented
type theory. A specific type is assigned to each object:

1. i is the type of terms,

2. if φ is a formula with n ∈ N0 free variables of types τ1, ..., τn, then (τ1, ..., τn) is the type of φ.
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Functions are interpreted as (n + 1)-ary relations. For example, the following formulas have these types:

x { i

φ := ∀x ∃y y = x { ( )

ψ(x) := ∃y y = x { (i)

χ(R, x) := ∀y R(y) ∨ R(x) { ((i), i)

This immediately prohibits formulas like S (S ), since if S accepts inputs of type τ, then the type of S is (τ). Moreover,
the rule eliminates the cause of Russell’s paradox and prevents its construction. This theory of types is now known
as simple type theory. But Russell feared that it was not enough. The formula

φ(x) := ∀R (¬R(x) ∨ R(x)) ,

for example, can itself be seen as a relation – so does the quantification reference the definition it is itself part
of? This property is known as impredicativity. Out of fear of circularity, Russell introduced a second system, the
so called ramified hierarchy. To simplify the resulting theory, he also added an axiom, the so called axiom of
reducibility. We will not go into the details of his construction, as it will not be relevant to the following sections. In
fact, in his proof of the first incompleteness theorem, Gödel uses (a slightly different formulation of) simple type
theory, which we will discuss in the next chapter. For further reading on impredicativity, we recommend [Cro18] as
well as [Sch61]. For more information on type theory, we recommend [Coq22].
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2 Gödel’s Incompleteness Theorems

Definition 2.0.1. (Incompleteness of theories) Let T = (L,A) be a theory. T is called incomplete if there exists a
formula φ in L such that neither T ⊢ φ nor T ⊢ ¬φ hold.

This notion of incompleteness is not to be confused with the kind - used in Gödel’s completeness theorem.
Unless otherwise noted, we refer to this new definition throughout this chapter. In 1931, Gödel demonstrated that
nearly all mathematical theories are incomplete. We follow his original proof of the first incompleteness theorem as
presented in [Göd31]. To improve readability we will use modern notation.

2.1 Gödel’s System P

Gödel introduced a concrete theory, the system P, for which he proved the (first) incompleteness theorem. It is the
system obtained by using the Peano axioms in the logic of Principia Mathematica. In particular, it is a higher-order
system using (simple) type theory. Unlike Gödel, we include the operations of addition and multiplication. This is
not necessary, since they can be defined in Gödel’s original language. But it makes our notation simpler.

Definition 2.1.1. (Language of P) The Language LP of P is defined as in Section 1.8, where C = {0},V =
{x1, y1, z1, . . . , x2, y2, z2, . . . , x3, y3, z3, . . . },F = {S,+,×} and R = ∅. Variables xi, yi and zi are of type i, where
type-1 variables are individual variables and ones with type i ≥ 2, relation variables. The type of relation variables
dictates whether it represents properties of natural numbers, properties of properties of natural numbers, and so on.
The arity of variables of type i ≥ 2 is always set to 1.

We will write xi, yi, zi to indicate a specific variable of type i, ξi or ζi to indicate any variable of type i and ξ or ζ
to indicate any variable of any type. If we want to talk about multiple specific variables of type 1, we may denote
them by α1, α2, . . . . Variables ξ1 can be considered as individuals, namely those corresponding to a natural number.
Variables ξ2 model a set of natural numbers, ξ3 a set of sets of natural numbers, and so on. If ξn is a variable of
type n, we will call the corresponding modelled objects (numbers, sets of numbers, and so on), objects of type n.
Note that we did not allow relation variables with arity k ≥ 2, nor did we allow function variables. However, this is
not limiting: A function f of arity k can be represented as a relation of arity k + 1,

f ≡ R(a1, . . . , ak+1) ≡ {(a1, . . . , ak, ak+1) | ak+1 = f (a1, . . . , ak)} .

Furthermore, k-tuples of objects of the same type can be represented as sets,

(b1, . . . , bk) ≡ {{b1}, {b1, b2}, {b1, b2, b3}, . . . , {b1, . . . , bk}} .

This is also known as “Kuratowski’s pairing”. Moreover, note that an object of type n can be represented to have
type n + s for every s ∈ N by nesting it in sets,

b ≡ {. . . {︸︷︷︸
s-times

b} . . . } ,

and that we can thus represent any k-tuple of objects of different types as a set of elements of the same type.
However, we can represent a set of objects of the same type as a unary relation of that type.

Definition 2.1.2. (Terms / Signs of type 1) As in Definition 1.8.1 we define the following as terms:

• Variables of type 1: x1, y1, z1, . . . ,

• Constant(s): 0,
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• If t1, t2 are terms, then so are S(t1), t1 + t2 and t1 × t2.

Terms will also be called signs of type 1. Signs of type n for n ≥ 2 are defined to be the same as variables of type n.

Next, we define atomic formulas, or as Gödel calls them, elementary formulas.

Definition 2.1.3. (Atomic formulas / elementary formulas) Let ξ2 be a variable of type 2 and t a sign of type 1. Let
ξn+1 be a variable of type n + 1 and ζn a variable of type n. Then, the expressions

ξ2(t) , ξn+1(ζn)

are called elementary (atomic) formulas.

The fact that a sign of type n+ 1 accepts exactly a sign of type n as an input is the implementation of simple type
theory in Gödel’s system P. It prevents the construction of sets that contain themselves and therefore antinomies
like Russell’s paradox. Formulas are now defined in the same way as in Definition 1.8.2. Like earlier, we will also
use abbreviations (for ∃,→ and ∧) as well as differently sized and square brackets. If it improves readability, we
may omit brackets. Of course, these notations exist only in our meta language.

We will call a formula φ...

• ... sentential (or closed) formula, if FV(φ) = ∅, i.e. φ has no free variable,

• ... n–place relation sign, if every free variable in φ is of type 1 and |FV(φ)| = n,

• ... class sign, if every free variable in φ is of type 1 and |FV(φ)| = 1.

The notion of relation signs is not to be confused with that of relation symbols given by R (= ∅ in LP). Furthermore,
we will use the familiar notation φ {ξn 7→ σ} to indicate a substitution of free instances of the variable ξn in φ by σ.
To conform with type theory, we demand that σ is a sign of type n. Moreover, we call a formula φ̃ a type elevation
of the formula φ, if φ̃ emerges from φ by increasing the type of every variable in φ by the same value s ∈ N. For
instance, in the following equation, φ̃ is a type elevation of φ:

φ(x4, x3) = x4(x3) ∨ ∃x2 ∀x1 x2(x1) { φ̃(x6, x5) = x6(x5) ∨ ∃x4 ∀x3 x4(x3) .

The equality sign is not introduced as a basic sign of the language but can rather be defined as in Equation (10).
Using type elevation, this yields a definition for equality between signs of type n, for every n ∈ N.

The system P is given by defining the axiomatic system A, the logical axioms ALo and the rules of inference I.
As noted above, we will use the set of Peano axioms as an axiomatic system:

Definition 2.1.4. (Definition of A) The second-order formulation of Peano arithmetic is given by axioms Q1-Q6 in
Example 1.3.8 (i.e. all except the definition of <) and a second-order version of the induction principle:

∀x2

[[
x2(0) ∧ ∀x1

(
x2(x1)→ x2(S(x1))

)]
→ ∀x1 x2(x1)

]
.

One can show that this choice of axioms in the language of P admits only models that are isomorphic to N, see
[Hof17, Section 2.2.3].

Definition 2.1.5. (Logical axioms of P) The following axioms are included:

• Axiom of extensionality: ∀x2 ∀y2
[
∀x1 (x2(x1)↔ y2(x1))→ x2 = y2

]
and any of its type elevations,

• Comprehension axiom: ∃ξn+1 ∀ζn (ξn+1(ζn)↔ φ), where ξn+1 is not free in φ.
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Furthermore, we will add the same axioms as in Definition 1.4.2 with some adjustments since P is higher-order:

• Axiom L4 and L10 are omitted,

• Axiom L6 is replaced with the above mentioned substitution,

• Axiom L8 is omitted, since it (and all its type elevations) can be proved using the definition of equality,

• Axiom L9 can be omitted, since it (and all its type elevations) can be proved using the definition of equality
and the axiom of comprehension.

Finally, the inference rules are defined as in IH, see Definition 1.4.1, although we extend the generalization rule
G to variables of any type.

Next, Gödel introduces a system that assigns a natural number to each formula and to each proof.

Definition 2.1.6. (Assignment of primitive signs) We will assign a natural number to every primitive sign:

“0” { 1 “S” { 3 “¬” { 5 “∨” { 7 “∀” { 9

“(” { 11 “)” { 13 “+” { 15 “×” { 17 “xn” { pn
8

“yn” { pn
9 “zn” { pn

10 . . .

Here, pi describes the i-th prime number (p8, p9, p10, . . . are the prime numbers > 17). Let Φ:LP → N be the
function that maps primitive signs to their corresponding natural number.

Definition 2.1.7. (Gödel numbering) Let ϕ = σ1, . . . , σk be a finite sequence (string) of primitive signs. We define:

⌜ϕ⌝ = ⌜σ1, . . . , σk⌝ := 2Φ(σ1) · 3Φ(σ2) · 5Φ(σ3) · . . . · pΦ(σk)
k .

We call ⌜ϕ⌝ the Gödel number of ϕ. Moreover, if ϕ1, . . . , ϕk is a finite list of strings of primitive signs, we define:

⌜ϕ1, . . . , ϕk⌝ := 2⌜ϕ1⌝ · 3⌜ϕ2⌝ · 5⌜ϕ3⌝ · . . . · p⌜ϕk⌝
k ,

and again call ⌜ϕ1, . . . , ϕk⌝ the Gödel number of ϕ1, . . . , ϕk.

Note that ⌜•⌝ is injective, since the exponents in the prime factorization of ⌜ϕ⌝ are all odd, while they are all
even in the factorization of ⌜ϕ1, . . . , ϕk⌝.

Instead of saying φ1, . . . , φk stand in some (metamathematical) relation R, we can say that the natural numbers
⌜φ1⌝, . . . , ⌜φk⌝ stand in some relation R′, i.e. (⌜φ1⌝, . . . , ⌜φk⌝) ∈ R′ ⊆ Nk. Similarly for primitive signs or lists
of strings. Since our system P is able to make statements about the natural numbers, we are able to express
metamathematical statements about P within P. Whenever we describe relations of natural numbers by interpreting
them as the Gödel numbers of metamathematical objects (if possible), we will write in CAPITAL LETTERS. For
example, instead of saying that n and k are natural numbers such that there is a proof of some formula φ in P where
this proof has Gödel number n and φ has Gödel number k, we will say that n is a PROOF of k.

One might wonder about the detailed exploration of Gödel’s system P that we have presented. While it is
true that our upcoming discussion will not need many of the definitions outlined here, they were necessary in the
original proof. One of the core theorems of his work is based on these definitions. In addition, Gödel’s detailed
introduction has historical significance. It shows the system Gödel used to illustrate his theorem and to convince his
contemporary mathematicians – many of whom thought a complete mathematical theory was possible. Although
we will take a slightly different approach in the following section, which does not require this detailed introduction,
we thought it important to appreciate the historical context of this seminal work.
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2.2 Primitive Recursive Functions

We shall leave the system P for the moment to introduce a subset of (computable) functions:

Definition 2.2.1. (Primitive recursive functions) The following functions f :Nn → N are called primitive recursive:

PR1. for n = 1 and c ∈ N, the constant functions fc(x) = c,

PR2. for every i ≤ n, the projection functions πi(x1, . . . , xn) = xi,

PR3. for n = 1, the successor function S(x) = x + 1,

PR4. for primitive recursive functions h:Nm → N and g1, . . . , gm:Nn → N, the composition:

h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))

PR5. for primitive recursive functions h:Nn+1 → N and g:Nn−1 → N, the function f :Nn → N, defined by:

f (0, x2, . . . , xn) = g(x2, . . . , xn)

f (k + 1, x2, . . . , xn) = h(k, f (k, x2, . . . , xn), x2, . . . , xn)

Definition 2.2.2. The property of a function being primitive recursive can be defined as being the last member fr = f
in a finite sequence f1, . . . , fr of functions, where each function fi is either ...

• ... of the form PR1, PR2 or PR3 or

• ... the result of applying PR4 or PR5 to functions f j with j < i.

We call the length of the shortest possible such sequence the degree of f .

Let f be as in PR5 for some primitive recursive functions h:Nn+1 → N and g:Nn−1 → N. Calculat-
ing f (k, x1, . . . , xn) can be done using a for loop like in Algorithm 1. We will use Python syntax for these

1 def f(k, x2, . . . , xn):
2 result = g(x2, . . . , xn)
3 for i in range(k):
4 result = h(i, result, x2, . . . , xn)
5 return result

Algorithm 1: Primitive recursive schema as a for-loop

algorithms. Thus, the for loop ranges from i = 0 to i = k − 1. If we assume g to be constructed using PR5 as
well, we can unfold it to Algorithm 2. Furthermore, if we assume h to be constructed using PR5, we can unfold
it to Algorithm 3. We are seemingly restricted in the design of these for-loops since the schema specifies exactly
what values i has to range over and which variables may be used inside the loop. For example, according to the
schema, in Algorithm 1, i must range over 0, . . . , k − 1 and the functions g and h must not depend on k. However,
this is not limiting, as a short observation shows: First, let f (x1, . . . , xn) be a primitive recursive function and
let ω: {1, . . . , n} → {1, . . . , n} be a permutation. Then, according to PR4, the function

f (xω(1), . . . , xω(n)) = f (πω(1)(x1, . . . , xn), . . . , πω(n)(x1, . . . , xn))

is primitive recursive. Thus, by applying an appropriate permutation afterwards, we can assume that looping over
any one of the input variables will result in a primitive recursive function. Next, note that instead of looping
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1 def f(k, x2, . . . , xn):
2 result = gg(x3, . . . , xn)
3 for i in range(x2):
4 result = hg(i, result, x3, . . . , xn)
5 for i in range(k):
6 result = h(i, result, x2, . . . , xn)
7 return result

Algorithm 2: Lists of for-loops are primitive recursive

1 def f(k, x2, . . . , xn):
2 result = gg(x3, . . . , xn)
3 for i in range(x2):
4 result = hg(i, result, x3, . . . , xn)
5 for i in range(k):
6 temp = gh(result, x2, . . . , xn)
7 for j in range(i):
8 temp = hh( j, temp, result, x2, . . . , xn)
9 result = temp

10 return result
Algorithm 3: Nesting of for-loops is primitive recursive

over i = 0, . . . , k − 1, we can use i = 0, . . . ,m(k) − 1 if m is primitive recursive, by defining f ◦ (m ◦ π1, π2, . . . , πn).
Finally, we can apply a simple trick that allows us to pass down variables in a for loop: For example, consider f as in
Algorithm 1. We can allow g and h to depend on k by first defining f̃ in Algorithm 4 and then f as in Equation (12).

1 def f̃(k, x1, x2, . . . , xn):
2 result = g(x1, . . . , xn)
3 for i in range(k):
4 result = h(i, result, x1, . . . , xn)
5 return result

Algorithm 4: Passing down variables

f (k, x2, . . . , xn) := ( f̃ ◦ (π1, π1, π2, . . . , πn)) (k, x2, . . . , xn) = f̃ (k, k, x2, . . . , xn) (12)

We have just seen that functions defined by some code consisting of a list of nested for-loops using only primitive
recursive functions are primitive recursive. Furthermore the process of first calculating r such lists of nested for-loop
functions and then evaluating their result in a primitive recursive function yields a primitive recursive function. We
will now show that we can also use if-else blocks, as well as break statements inside a loop and that we are allowed
to define additional variables. To do so, we first prove that certain functions are primitive recursive:

Lemma 2.2.3. Addition, saturated subtraction (monus), multiplication and exponentiation is primitive recursive:

+ (k, n) := k + n −̇ (k, n) :=

 k − n, for k > n
0, else

• (k, n) := k · n exp(k, n) := kn

Proof. See Algorithms 5, 6, 7, 8. Note that they will also work in edge cases (i.e. if k = 0, n = 0 or both). □
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1 def +(k, n):
2 result = n
3 for i in range(k):
4 result = S(result)
5 return result

Algorithm 5: Addition

1 def −̇ (k, n):
2 result = k
3 for i in range(n):
4 temp = 0
5 for j in range(result):
6 temp = j
7 result = temp
8 return result

Algorithm 6: Saturated subtraction

1 def •(k, n):
2 result = 0
3 for i in range(k):
4 result = + (result, n)
5 return result

Algorithm 7: Multiplication

Definition 2.2.4. (Primitive recursive relations) Recall that an n-ary relation on N is a subset of Nn. We call an n-ary
relation R on N primitive recursive, if there exists a primitive recursive function fR:Nn → N such that:

(x1, . . . , xn) ∈ R ⇐⇒ fR(x1, . . . , xn) = 0

Corollary 2.2.5. The relations ≤,≥ are primitive recursive. Furthermore, if R and S are primitive recursive n-ary
relations, so are R ∩ S , R ∪ S and Rc := Nn \R.

Proof. Set f≤(k, n) := −̇ (k, n) and f≥(k, n) := −̇ (π2(k, n), π1(k, n)). Let R, S be two primitive recursive n-ary
relations and fR, fS :Nn → N the corresponding (primitive recursive) functions. We define:

fR∩S := + ( fR, fS ) , fR∪S := • ( fR, fS ) , fRc := ≤ (1, fR) .

These functions are primitive. It is easy to verify that they satisfy the desired relations. □

Remark. Note that “∩” usually corresponds to “•” and “∪” to “+”. In this case they are reversed.

Because of Corollary 2.2.5, < := (≥)c, > := (≤)c and = := (≤) ∩ (≥) are primitive recursive relations. We can
now introduce a way to implement if-else statements in our primitive recursive code.
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1 def exp(k, n):
2 result = 1
3 for i in range(n):
4 result = • (result, k)
5 return result

Algorithm 8: Exponentiation

Lemma 2.2.6. Let R be a primitive recursive n-ary relation and f1, f2:Nn → N two primitive recursive functions.
There exists a primitive recursive function f :Nn → N such that:

f (x1, . . . , xn) =

 f1(x1, . . . , xn), if (x1, . . . , xn) ∈ R
f2(x1, . . . , xn), if (x1, . . . , xn) ̸∈ R

Proof. Let R, f1 and f2 be as described. The function:

f := +
(
•
(
−̇ (1, fR), f1

)
, •
(
−̇
(
1, −̇ (1, fR)

)
, f2
))
= (1 −̇ fR) · f1 + (1 −̇ (1 −̇ fR)) · f2

is primitive recursive and satisfies the desired property. □

Let R be a primitive recursive relation and h1, h2:Nn+1 → N two primitive recursive functions. Let h̃ be as in
Lemma 2.2.6. If we replace h in Algorithm 1 with h̃, we get a function represented by Algorithm 9. The same

1 def f(k, x2, . . . , xn):
2 result = g(x2, . . . , xn)
3 for i in range(k):
4 if (i, result, x2, . . . , xn) ∈ R:
5 result = h1(i, result, x2, . . . , xn)
6 else:
7 result = h2(i, result, x2, . . . , xn)
8 return result

Algorithm 9: If-else implementation

argument holds, of course, whenever we apply a primitive recursive function in code.
Next, we will introduce a way to implement variables in our language. To do so, we use an auxiliary function:

Lemma 2.2.7. (Cantor pairing function) The so called Cantor pairing function is bijective:

C:N2 → N , (k, n) 7→ k +
(n + k) · (n + k + 1)

2
= k +

n+k∑
i=1

i

Proof. For a proof, see e.g. [Wei87, Section 1.2]. □

Lemma 2.2.8. The functions C, C−1
1 := π1 ◦C−1 and C−1

2 := π2 ◦C−1 are primitive recursive.

Proof. The function C is obviously primitive recursive, see Algorithm 10. Moreover, Algorithm 11 proves that

D(c, s) :=

 C−1
1 (c), for s = 1

C−1
2 (c), for s ̸= 1
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and thus C−1
1 = D(•, 1) and C−1

2 = D(•, 2) are primitive recursive. Note that C(r, s) > c, if r > c or s > c and
that C(r, s) is bijective. Thus, the if condition is satisfied exactly once in the for-loop. □

1 def C(k, n):
2 result = 0
3 for i in range(n + k + 2):
4 if i < n + k + 1:
5 result = result + i
6 else:
7 result = result + k
8 return result

Algorithm 10: Cantor pairing

1 def D(c, s):
2 result = 0
3 for i in range(c + 1):
4 for j in range(c + 1):
5 if c == C(i, j):
6 if s == 1:
7 result = i
8 else:
9 result = j

10 else:
11 result = result
12 return result

Algorithm 11: Inverse of Cantor pairing

Now, it is easy to define additional variables in our code. We use this technique to prove the following result:

Lemma 2.2.9. The break command for for-loops can be used in our code.

Proof. Pseudocodes 12, 13 and 14 will yield equivalent results. □

We have seen that code that uses lists of nested for-loops with if-else and break blocks is primitively recursive.
With this tool in mind, it is easy to show that a function is primitive recursive.

Example 2.2.10. The relation Prime := {n ∈ N | n is prime} is primitive recursive. The function Π(k) := pk, where
pk is the k-th prime number for k > 0 and p0 := 1, is also primitive recursive.

Proof. Bertrand’s postulate states that for all n > 1, there exists a prime number p such that n < p < 2n. For a
proof, see [Ram19]. Thus, we know that for any k ∈ N, there are prime numbers q1, . . . , qk, where

2 < q1 < 22 < q2 < 23 < · · · < qk < 2k+1 .

In particular, this implies Π(k) < 2k+1. Algorithm 15 proves that the relation Prime, and Algorithm 16 that the
function Π is primitive recursive. □
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1 def break_example(k, x2, . . . , xn):
2 result = C(1, g(x2, . . . , xn))
3 for i in range(k):
4 if fR

(
i,C−1

2 (result), x2, . . . , xn
)
·C−1

1 (result) == 0:
5 result = C

(
0,C−1

2 (result)
)

6 else:
7 result = C

(
C−1

1 (result), h(i,C−1
2 (result), x2, . . . , xn)

)
8 return C−1

2 (result)
Algorithm 12: Break function in primitive recursive form

1 def break_example2(k, x2, . . . , xn):
2 result = g(x2, . . . , xn)
3 temp = 1
4 for i in range(k):
5 if R(i, result, x2, . . . , xn) or temp == 0:
6 temp = 0
7 result = result
8 else:
9 temp = temp

10 result = h(i, result, x2, . . . , xn)
11 return result

Algorithm 13: Break function using variables

1 def break_example3(k, x2, . . . , xn):
2 result = g(x2, . . . , xn)
3 for i in range(k):
4 if R(i, result, x2, . . . , xn):
5 break
6 result = h(i, result, x2, . . . , xn)
7 return result

Algorithm 14: Break function

1 def fPrime(k):
2 if k < 2:
3 result = 1
4 else:
5 result = 0
6 for i in range(k):
7 for j in range(k):
8 if i · j == k:
9 result = result + 1

10 return result
Algorithm 15: Prime relation
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1 def Π(k):
2 result = 0
3 counter = 1
4 for i in range(2k+1):
5 result = i
6 if i ∈ Prime and counter < k:
7 counter = counter + 1
8 else:
9 if i ∈ Prime:

10 break
11 return result

Algorithm 16: k-th prime number

Note that Bertrand’s postulate is a non-trivial number-theoretic statement. Thus, proving that Π is primitive
recursive is not an obvious result.

Example 2.2.11. Let p1, p2, p3, . . . be the sequence of prime numbers in N. The following functions are primitive
recursive:

1. prime-exp (n, k) :=

 ek, if n, k > 0 and where n = Π∞i=1 pei
i

0, else

2. length (n) :=

 k, if n > 1 and where n = Πk
i=1 pei

i for ek ̸= 0
0, if n ≤ 1

3. var-type (n) :=

 k, if n = pk for a prime number p > 17
0, else

Thus, for a sequence of primitive signs ϕ = σ1, . . . , σr and a variable xn of type n, we have for all i = 1, . . . , r:

prime-exp ( ⌜ϕ⌝, i ) = Φ(σi), length ( ⌜ϕ⌝ ) = r, var-type (Φ(xn)) = n

Proof. For prime-exp see code 17. Note that pn−1 ≥ n for all prime numbers p and natural numbers n ≥ 1. For
length see code 18. Note that pn ≥ n for all n. For var-type see code 19. □

1 def prime-exp(n, k):
2 result = 0
3 p = Π(k)
4 for i in range(n):
5 if k == 0:
6 break
7 for j in range(n + 1):
8 if j · pi == n:
9 result = i

10 return result
Algorithm 17: Get the k-th prime exponent
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1 def length(n):
2 result = 0
3 for i in range(n + 1):
4 if prime-exp (n, i) != 0:
5 result = i
6 return result

Algorithm 18: Get the length of a string

1 def type(n):
2 result = 0
3 for i in range(n):
4 for j in range(n):
5 if Π(i + 7) j == n:
6 result = j
7 return result

Algorithm 19: Get the type of a variable

At this point we end our study of primitive recursive functions. We have seen that they can be represented as a
function in a programming language with the restriction of only allowing for-loops. Well aware of the expressiveness
of these functions, we are not surprised that there is a primitive recursive relation B ⊆ N2 consisting of all tuples (n, k)
such that n is a PROOF of k. The reader can easily imagine how such an algorithm would be constructed using the
tools provided in this section. First, the algorithm would have to verify that k is a FORMULA. To do so, it should
check whether k is a STRING and whether it is COMPOSED of ATOMIC FORMULAS according to Definition 1.8.2.
Furthermore, the algorithm should check whether these atomic formulas conform to the syntax in Definition 2.1.3.
The functions from the last example give a first indication of how to achieve this. They can resolve, for example,
the LENGTH and INDIVIDUAL CHARACTERS of the STRING k. In a similar vein, the algorithm should verify that
n is a PROOF and that its LAST FORMULA is the FORMULA k. We will not provide a concrete algorithm, since the
construction does not cause any difficulties and the modern reader immediately believes this result. Gödel, on the
other hand, could not base his reasoning on the intuition of his contemporaries in 1931. The concept of a (theoretical)
calculating machine and the related idea of algorithms was introduced only later by Alan Turing, see Chapter 3.
Thus, in his original proof, we find a long technical section in which Gödel constructs the relation B from scratch,
using Definition 2.2.1, see [Göd31].

Theorem 2.2.12. The relation B := {(n, k) | n is a PROOF of the FORMULA k} ⊆ N2 is primitive recursive. We will
also denote this relation by:

n B k :⇐⇒ (n, k) ∈ B

Based on this relation, we can define the relation of provability (regarding FORMULAS n):

Bew (n) :⇐⇒ n ∈ Bew, Bew := {n ∈ N | ∃ r : r B n}

The relation Bew is not primitive recursive. Recall that k is an abbreviation of the term S(. . . S(k) . . . )︸           ︷︷           ︸
k-times S

. We define

the following primitive recursive functions:

• Z(k) := ⌜k⌝ for all natural numbers k,

• Sb ( ⌜φ⌝,Φ(ξi11), ⌜ti11⌝, . . . ,Φ(ξinn), ⌜tinn⌝ ) := ⌜φ(ξi11, . . . , ξinn 7→ ti11, . . . , tinn)⌝ for every formula φ, vari-
ables ξi11, . . . , ξinn and signs ti11, . . . , tinn of types i j,
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• Neg ( ⌜φ⌝ ) := ⌜¬φ⌝ for every formula φ,

• Gen
(
Φ(ξ), ⌜φ⌝

)
:= ⌜∀ξ φ⌝ for every formula φ and variable ξ.

The following theorem bridges our knowledge of primitive recursive relations and the system P from Section 2.1.

Theorem 2.2.13. Let R ⊆ Nn be an n-ary relation on the natural numbers. If R is primitive recursive, there exists
an n-ary relation sign φ in P with free variables α1, . . . , αn such that:

(k1, k2, . . . , kn) ∈ R =⇒ Bew
(
Sb
(
⌜φ⌝,Φ(α1), ⌜k1

⌝, . . . ,Φ(αn), ⌜kn
⌝ ))
⇐⇒ P ⊢ φ

(
k1, . . . , kn

)
(k1, k2, . . . , kn) ̸∈ R =⇒ Bew

(
Neg
(

Sb
(
⌜φ⌝,Φ(α1), ⌜k1

⌝, . . . ,Φ(αn), ⌜kn
⌝ ) ))

⇐⇒ P ⊢ ¬φ
(
k1, . . . , kn

)
Proof. The theorem states that P is able to simulate the code corresponding to R, i.e. prove for a specific choice of
k1, . . . , kn what the evaluation in fR will be. The formal proof is rather technical and we will only state the proof
idea: The theorem follows if we can show for any n-ary primitive recursive function f :

y = f (k1, . . . , kn) =⇒ P ⊢ y = f
(
k1, . . . , kn

)
and y ̸= f (k1, . . . , kn) =⇒ P ⊢ y ̸= f

(
k1, . . . , kn

)
(13)

It is important to note that Equation (13) is not formally correct, as the right-hand sides of ⊢ are not formulas
according to Definition 2.1.2. It is to be interpreted as a notation that refers to a formula φ that expresses this
(in)equality in terms of the formal syntax of P. We prove by induction over the degree of f . For r = 1, f is either a
constant function, a projection or f = S. In all cases it is trivial that f

(
k1, . . . , kn

)
is a term and that Equation (13)

holds. Assume the statement has been shown for all j < r and let f = fr be given by the sequence f1, . . . , fr. By the
induction hypothesis, Equation (13) holds for all f1, . . . , fr−1 and since r > 1, f is the result of applying PR4 or PR5
to functions fi1 , . . . , fim . One has to verify that in both cases the resulting statement can be formally represented in P.
It is then possible to show that P will be able to prove the corresponding result. Thus, Equation 13 holds for fr = f ,
which concludes the proof. For a formal proof of this theorem, see [HB34] and [HB39]. In addition, we will later
improve this result and give insight into how to construct these formulas. □

When expressed in terms of natural numbers, Theorem 2.2.13 states: For any primitive recursive relation R ⊆ Nn,
there exists an n-ARY RELATION SIGN r ∈ N with FREE VARIABLES 19, 23, . . . , pn+7 such that:

(k1, . . . , kn) ∈ R =⇒ Bew
(
Sb
(
r, 19,Z(k1), . . . , pn+7,Z(kn)

))
(k1, . . . , kn) ̸∈ R =⇒ Bew

(
Neg
(
Sb
(
r, 19,Z(k1), . . . , pn+7,Z(kn)

)))
When a RELATION SIGN r is assigned a primitive recursive relation as above, we call r primitive recursive.

2.3 The First Incompleteness Theorem for Extensions of P

Let χ ⊆ N be a set of FORMULAS in P. We refer to P ∪ χ as the theory that arises from P by extending its axioms:

AP∪ χ := {φ | φ ∈ AP or ⌜φ⌝ ∈ χ} .

Furthermore, we define Flg ( χ) (for “Folgerungen”) to be the set of THEOREMS of P ∪ χ:

Flg ( χ) := { ⌜φ⌝ | P ∪ χ ⊢ φ } .

Definition 2.3.1. P ∪ χ is called ω-consistent if there is no CLASS SIGN a with FREE VARIABLE v such that:

∀n
[
Sb (a, v,Z(n)) ∈ Flg ( χ)

]
and Neg (Gen (v, a)) ∈ Flg ( χ)
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If we use our standard notation for P, interpret a as a formula φ and v as free variable ξ1, the equation in
Definition 2.3.1 can be read as:

∀n : P ∪ χ ⊢ φ (n) and P ∪ χ ⊢ ¬∀ ξ1 φ(ξ1) (14)

Note that the universal quantifier on the left is part of our metalogic, while on the right it is part of LP. Suppose P∪χ
is inconsistent as in Definition 1.7.2. Then, by the principle of explosion, any formula is provable, including those
in Equation (14) (for any class sign φ). Thus P ∪ χ is ω-inconsistent. The contrapositive of this argument states that
an ω-consistent system P ∪ χ is always also consistent. However, the converse does not hold. Using Gödel’s second
incompleteness theorem, we will later construct a consistent but ω-inconsistent theory, see Example 2.5.4.

Theorem 2.3.2. (Incompleteness of P∪χ) Let χ ⊆ N be a primitive recursive set of FORMULAS. If P∪χ isω-consistent,
then it is incomplete.

Proof. Suppose P ∪ χ is ω-consistent. We will show that there exists a primitive recursive class sign φ with free
variable x1 such that

P ∪ χ ̸⊢ ∀x1 φ(x1) and P ∪ χ ̸⊢ ¬∀x1 φ(x1) .

This will be an immediate corollary of Theorem 2.3.3. We can easily translate the results between our standard
notation for P and the notation using natural numbers. □

Theorem 2.3.3. (Incompleteness of P ∪ χ, N notation) Let χ ⊆ N be a set of FORMULAS. If P ∪ χ is ω-consistent
and χ primitive recursive, then there exists a primitive recursive CLASS SIGN r with FREE VARIABLE v such that

Gen (v, r) ̸∈ Flg ( χ) and Neg (Gen (v, r)) ̸∈ Flg ( χ) .

Proof. Similar to Theorem 2.2.12, there exists a primitive recursive relation Bχ ⊆ N
2 defined by:

n Bχ k :⇐⇒ (n, k) ∈ Bχ , Bχ := {(n, k) | n is a PROOF in P ∪ χ of the FORMULA k}

Again, we set Bewχ (n) :⇐⇒ n ∈ Bewχ := {n ∈ N | ∃r r Bχ n}. Since any proof in P is a proof in P ∪ χ, we get:

Bew ⊆ Bewχ = Flg ( χ) . (15)

Let us define the following relation Q ⊆ N2:

(k1, k2) ∈ Q :⇐⇒
(
k1,Sb (k2, 23,Z(k2))

)
̸∈ Bχ . (16)

Since Sb and Z are primitive recursive, so is N2 \Q and therefore, by Corollary 2.2.5, Q. Thus, Theorem 2.2.13
assures the existence of some FORMULA q with FREE VARIABLES 19, 23 such that the following holds:(

k1,Sb (k2, 23,Z(k2))
)
̸∈ Bχ =⇒ (k1, k2) ∈ Q

=⇒ Bew
(
Sb
(
q, 19,Z(k1), 23,Z(k2)

))
=⇒ Bewχ

(
Sb
(
q, 19,Z(k1), 23,Z(k2)

)) (17)

(
k1,Sb (k2, 23,Z(k2))

)
∈ Bχ =⇒ (k1, k2) ̸∈ Q

=⇒ Bew
(
Neg
(
Sb (q, 19,Z(k1), 23,Z(k2))

))
=⇒ Bewχ

(
Neg
(
Sb (q, 19,Z(k1), 23,Z(k2))

)) (18)
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Next, we define two FORMULAS p, r by:

p := Gen (19, q) ∈ N and r := Sb (q, 23,Z(p)) ∈ N . (19)

Let us denote by φn the formula corresponding to n = ⌜φn⌝. Then, the definition of p and q can be read as follows:

φp = ∀x1 φq(x1, y1) and φr = φq
{

y1 7→ ⌜φp⌝
}
.

Note that φp is a class sign with the free variable y1. Thus, given any natural number n, we can substitute y1 for n.
In particular, we are allowed to choose n = p = ⌜φp⌝. For all k1 ∈ N, Equation (20) and 21 hold:

Sb (p, 23,Z(p)) = Sb
(
Gen (19, q), 23,Z(p)

)
= Gen

(
19,Sb (q, 23,Z(p))

)
= Gen (19, r) (20)

Sb
(
q, 19,Z(k1), 23,Z(p)

)
= Sb

(
Sb (q, 23,Z(p)), 19,Z(k1)

)
= Sb

(
r, 19,Z(k1)

)
(21)

In Equation (20), we can switch the functions Gen and Sb, since the SUBSTITUTION did not affect the VARIABLE 19.
In Equation (21) we are allowed to split up Sb due to Notation 3 and change the order of substitution since this does
not affect its outcome. If we combine Equations (20), (17) and (21), we get:(

k1,Gen (19, r)
)
̸∈ Bχ ⇐⇒

(
k1,Sb (p, 23,Z(p))

)
̸∈ Bχ =⇒ Bewχ

(
Sb
(
q, 19,Z(k1), 23,Z(p)

))
⇐⇒ Bewχ

(
Sb
(
r, 19,Z(k1)

)) (22)

Applying the same argument to Equations (20), (18) and (21) yields:(
k1,Gen (19, r)

)
∈ Bχ =⇒ Bewχ

(
Neg
(
Sb (r, 19,Z(k1))

))
(23)

Equations (22) and (23) have the following meaning:

k1 does not encode a proof of ∀x1 φr(x1) =⇒ P ∪ χ ⊢ φr
(
k1
)

k1 does encode a proof of ∀x1 φr(x1) =⇒ P ∪ χ ⊢ ¬φr
(
k1
)

In this form we can easily see a kind of self-reference of ∀x1 φr(x1), which helps us to show that neither ∀x1 φr(x1)
nor ¬∀x1 φr(x1) are provable. We will demonstrate the corresponding statement in our notation in N:

1. Gen (19, r) ̸∈ Flg ( χ)

Since P ∪ χ is ω-consistent and thus, in particular, consistent, the following holds for all m ∈ N:

¬Bewχ (Sb (r, 19,Z(m))) or ¬Bewχ
(
Neg (Sb (r, 19,Z(m)))

)
.

If there is no PROOF (in P ∪ χ) for the FORMULA Sb (r, 19,Z(m)) for a specific m ∈ N, then there cannot be a
PROOF of Gen (19, r). The contrapositive of this statement can easily be shown using the substitution rule (see
L6). Furthermore, if we apply the contrapositive of Equation (23) to the right side, we get:

¬Bewχ (Gen (19, r)) or for all m ∈ N:
(
m,Gen (19, r)

)
̸∈ Bχ . (24)

But now the left and the right side are, by definition, each equivalent to Gen (19, r) ̸∈ Flg ( χ).
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2. Neg (Gen (19, r)) ̸∈ Flg ( χ)

Combining Equation (22) and the right side of Equation (24) proves:

for all m ∈ N: Bewχ

(
Sb
(
r, 19,Z(m)

))
.

On the other hand, the ω-consistency of P ∪ χ requires that the following implication holds:

for all m ∈ N:
[
Sb (r, 19,Z(m)) ∈ Flg ( χ)

]
=⇒ Neg (Gen (19, r)) ̸∈ Flg ( χ) .

Thus, combining the last two equations proves Neg( Gen (19, r)) ̸∈ Flg ( χ). □

Gödel finished his proof in a different way. He showed that Gen (19, r) is undecidable by assuming the opposite
and then deriving a contradiction in the obvious way. However, as we have shown, this is not necessary, since a
direct argument can be used.

An immediate corollary of Theorem 2.3.2 is the incompleteness of P (if we assume P to be ω-consistent).

Example 2.3.4. (ω-consistent and complete theory) Let us assume that P is a sound and ω-consistent theory. We
denote the standard model of P as N. Define χ by

χ :=
{
⌜φ⌝ | P |= φ

}
.

Note that some structure M is a model of P ∪ χ if and only if it is a model of P (by definition of χ and the fact
that P ⊆ P ∪ χ). The second-order version of Peano arithmetic (as found in P) uniquely defines the natural numbers
up to isomorphism. As a result, exactly those structures equivalent to N are models of P and P ∪ χ. We will show
that P ∪ χ is ω-consistent and complete: First suppose it is ω-inconsistent. Then, there would be a class sign φ
such that

∀n : P ∪ χ ⊢ φ (n) and P ∪ χ ⊢ ¬∀x1 φ(x1) .

By definition, P is sound if and only if P ∪ χ is sound. Thus, since N is a model of P ∪ χ, we would have:

∀n : N |= φ (n) and N |= ¬∀x1 φ(x1) .

The right side of this equation states that there exists a natural number n such that N |= ¬φ(n). But this contradicts
the left side of the equation, since for this specific n, N |= φ(n). Thus, our assumption was wrong and P ∪ χ is in
fact ω-consistent. Moreover, P ∪ χ is complete, for if it were not, there would be a sentence φ such that

P ∪ χ ̸⊢ φ and P ∪ χ ̸⊢ ¬φ .

In particular, φ would not be an axiom of P ∪ χ. Then, by the definition of χ, we would have

P ̸|= φ and P ̸|= ¬φ .

However, since all models of P are isomorphic, this is would yield a contradiction. As claimed, P∪χ is ω-consistent
and complete. Therefore, by Gödel’s first incompleteness theorem, χ cannot be primitive recursive.

Remark. The standard example in the literature for an ω-consistent and complete theory is true arithmetic. This
first-order system is defined by selecting all true first-order statements about the arithmetic of N as axioms. However,
this example is not applicable to our situation, since we need an extension of P which involves higher-order logic.

So far, we have seen that (under some weak conditions) there exists an undecidable proposition ∀x1 φ(x1)
in P ∪ χ. A priori, its corresponding semantic interpretation might be very abstract. We will now improve the result
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of Theorem 2.3.2 by showing that there are undecidable arithmetic formulas, i.e. basic statements about the natural
numbers that cannot be proved nor refuted. To do so, we first prove an auxiliary lemma:

Definition 2.3.5. (Gödel’s β-function) For any given natural numbers n, p ∈ N, p > 0, there exist uniquely defined
natural numbers k, r ∈ N such that n = k · p + r and 0 ≤ r < p. We set [n]p = r and call

β :N3 → N, (n, d, k) 7→ [n]1+(k+1)·d

the Gödel β-function.

Lemma 2.3.6. Let ( fi)i∈N be a sequence of natural numbers and let k ∈ N be a natural number. There are natural
numbers n, d such that

β(n, d, 0) = f0 , β(n, d, 1) = f1 , . . . , β(n, d, k − 1) = fk−1 .

Proof. Let l := max{k, f0, . . . , fk−1}. We start the proof by showing that the numbers

1 + (i + 1) · l! , for 0 ≤ i < k , (25)

are pairwise coprime. Suppose not, then there is a prime number p and some 0 ≤ i < j < k such that

p | (1 + (i + 1) · l! ) and p | (1 + ( j + 1) · l! ) ,

hence,
p | [(1 + ( j + 1) · l! ) − (1 + (i + 1) · l! )] .

This can be simplified to p | ( j − i) · l!. Since 0 < j − i ≤ j < k ≤ l, it follows that p | l! and thus p | (i + 1) · l!.
Together with p | (1 + (i + 1) · l! ) we can conclude that p | 1 which is not possible. Therefore, the assumption was
wrong and all numbers in Equation (25) are pairwise coprime. Thus, by the Chinese remainder theorem, there exists
a natural number n ∈ N such that

n ≡ fi mod (1 + (i + 1) · l! ) , for 0 ≤ i < k .

In other words, there are natural numbers s0, . . . , sk−1 ∈ Z such that

n = fi + si · (1 + (i + 1) · l! ) , for 0 ≤ i < k .

Note, that n, (1 + (i + 1) · l! ) ≥ 0 for all i and 0 ≤ fi ≤ l < (1 + (i + 1) · l! ). Therefore we must have si ∈ N

and fi = [n]1+(i+1)·l! = β(n, l! , i) for all i = 0, . . . , k − 1, which was to be demonstrated. □

Definition 2.3.7. We call a relation of natural numbers R ⊆ Nn arithmetical if it is of the form

R = {(x1, . . . , xn) ∈ Nn | ΦR(x1, . . . , xn)} ,

for some formula ΦR (in our meta language) consisting only of . . .

• variables, the equal sign and quantifiers (if they solely apply to natural numbers),

• addition and multiplication in N,

• and the logical connectives “∨” and “¬”.
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Example 2.3.8. The following relations are arithmetical:

x < y :⇐⇒ (x, y) ∈
{
(a, b) ∈ N2 | ∀c ∈ N : ¬(a = b + c)

}
Prime(x) :⇐⇒ x ∈

{
a ∈ N | ∀k1, k2 ∈ N :

(
(a = k1) ∨ (a = k2) ∨ (¬(k1 · k2 = a))

)
∧ (a > 1)

}
x ≡ y mod n :⇐⇒ (x, y, n) ∈

{
(a, b, c) ∈ N3 |

(
∃ d ∈ N : a = b + d · c

)
∨
(
∃ d ∈ N : b = a + d · c

) }
Theorem 2.3.9. Every primitive recursive relation is arithmetical.

Proof. We will prove that for any primitive recursive function f :Nn → N there exists an arithmetical relation R ⊆
Nn+1 such that (x1, . . . , xn, xn+1) ∈ R if and only if xn+1 = f (x1, . . . , xn). This implies the theorem since the relation

(x1, . . . , xn) ∈ R f :⇐⇒ 0 = f (x1, . . . , xn) ⇐⇒ (x1, . . . , xn, 0) ∈ R

is arithmetical. Let f :Nn → N be primitive recursive. We prove by induction over the degree of f . The base
case is trivial: If f is constant, a projection (πi) or the successor function (S), the formula xn+1 = f (x1, . . . , xn) is
obviously arithmetical. Now, suppose f is of degree s > 1 and that the theorem has been shown for all i < s. By
Definition 2.2.1, f is of the form PR4 or PR5:

1. f (x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))

2. f (0, x2, . . . , xn) = g(x2, . . . , xn),
f (k + 1, x2, . . . , xn) = h(k, f (k, x2, . . . , xn), x2, . . . , xn)

All functions other than f must be primitive recursive with degree < s. In the first case, by the inductive hypothesis,
there exist arithmetical and primitive recursive relations U and S i, i = 1, . . . ,m, such that:

zm+1 = h(z1, . . . , zm) :⇐⇒ (z1, . . . , zm, zm+1) ∈ U ⇐⇒ ΦU(z1, . . . , zm, zm+1)

xn+1 = gi(x1, . . . , xn) :⇐⇒ (x1, . . . , xn, xn+1) ∈ S i ⇐⇒ ΦS i(x1, . . . , xn, xn+1)

Let us define:

Φ(x1, . . . , xn+1) := ∃ z1, . . . , zm ∈ N : ΦU(z1, . . . , zm, xn+1) ∧ ΦS 1(x1, . . . , xn, z1) ∧ . . . ∧ ΦS m(x1, . . . , xn, zm) . (26)

The set
{
(x1, . . . , xn, xn+1) ∈ Nn+1 | Φ(x1, . . . , xn+1)

}
then has the desired property.

In the latter case, by the inductive hypothesis, there are arithmetical and primitive recursive relations Q,T such that

xn+1 = g(x2, . . . , xn) :⇐⇒ (x2, . . . , xn, xn+1) ∈ Q ⇐⇒ ΦQ(x2, . . . , xn, xn+1)

xn+1 = h(x1, z, x2, . . . , xn) :⇐⇒ (x1, z, x2, . . . , xn, xn+1) ∈ T ⇐⇒ ΦT (x1, z, x2, . . . , xn, xn+1)
(27)

We define:

Φ(x1, . . . , xn+1) := ∃m, d, y ∈ N :
[
y = β(m, d, 0) ∧ ΦQ(x2, . . . , xn, y) ∧ ∀k ∈ N

(
k < x1 =⇒ ∃ y1, y2 ∈ N :

(y1 = β(m, d, k + 1)) ∧ (y2 = β(m, d, k)) ∧ ΦT (k, y2, x2, . . . , xn, y1)
)
∧ xn+1 = β(m, d, x1)

]
.

Let s1, . . . , sn+1 ∈ N be arbitrary fixed natural numbers. If Φ(s1, . . . , sn+1) holds, we know that there are natural
numbers f0, f1, . . . , fs1 as well as m, d such that:

1. fk = β(m, d, k) for all k = 0, . . . , s1,

2. f0 = β(m, d, 0) = g(s2, . . . , sn),
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3. fk+1 = β(m, d, k + 1) = h(k, β(m, d, k), s2, . . . , sn) = h(k, fk, s2, . . . , sn) for all k = 0, . . . , s1 − 1,

4. sn+1 = β(m, d, s1) = fs1 .

Thus, sn+1 = f (s1, s2, . . . , sn). Conversely, if sn+1 = f (s1, s2, . . . , sn) holds, by Lemma 2.3.6 there are natural
numbers m, d ∈ N such that β(m, d, k) = f (k, s2, . . . , sn) for all k = 0, . . . , s1. By defining fi := β(m, d, i) for i ≤ s1,
all of the points in the above list and thus Φ(s1, . . . , sn+1) hold. Moreover, note that the equation

y = β(m, d, i) ⇐⇒
(
y ≡ m mod (1 + (i + 1) · d)

)
∧ y < (1 + (i + 1) · d)

can be expressed arithmetically. In other words, the relation
{
(x1, . . . , xn, xn+1) ∈ Nn+1 | Φ(x1, . . . , xn+1)

}
is

arithmetical and has the desired property. □

Gödel briefly points out that one can repeat this proof in P for any particular primitive recursive relation, and
thus concludes the existence of unprovable arithmetic formulas. In order to fully follow his argument, we will give a
detailed proof of this implicit step:

Theorem 2.3.10. In any ω-consistent system P ∪ χ with primitive recursive set χ ⊆ N, there are undecidable
arithmetical propositions.

Proof. We will show that for any given primitive recursive function f :Nn → N, there exists an arithmetical formula
in P with free variables α1, . . . , αn+1 such that

kn+1 = f (k1, . . . , kn) =⇒ P ⊢ φ
(
k1, . . . , kn+1

)
and kn+1 ̸= f (k1, . . . , kn) =⇒ P ⊢ ¬φ

(
k1, . . . , kn+1

)
(28)

The theorem then follows like in Theorem 2.3.2 using this improved version of Theorem 2.2.13. Let f ∈ Nn be
primitive recursive. By Theorem 2.3.9 there exists an arithmetical formula Φ such that

kn+1 = f (k1, . . . , kn) ⇐⇒ Φ(k1, . . . , kn+1) .

Since P can formalize properties of the natural numbers (it contains the axioms of PA), there exists a corresponding
formula φ in P for which we will prove Equation (28). To do so we will revisit the proof of Theorem 2.3.9. In each
step of the induction, we will show that for any fixed k1, . . . , kn+1 ∈ N, Equation (28) as well as Equation (29) holds:

P ⊢ ∀αn+1
[
¬
(
αn+1 = kn+1

)
∧ φ
(
k1, . . . , kn+1

)
→ ¬φ

(
k1, . . . , kn, αn+1

)]
. (29)

In the base case, φ is of the form φ(α1, . . . , αn+1) ≡ (αn+1 = m) for a fixed m ∈ N, φ(α1, . . . , αn+1) ≡ (αn+1 = αi) for
some fixed 0 < i ≤ n, or φ(α1, α2) ≡ (α2 = S(α1)). The reader can easily verify that, for a specific choice of natural
numbers k1, . . . , kn+1 ∈ N, one can syntactically prove φ

(
k1, . . . , kn+1

)
if Φ(k1, . . . , kn+1) holds and ¬φ

(
k1, . . . , kn+1

)
if not. Moreover, Equation (29) is trivial for these cases and can easily be proved in P. In Chapter 1 we have studied
in detail how one can construct such formal proofs. Next, for the inductive step, suppose that f has degree s for
some s > 1 and that Equations (28) and (29) have been proved for all functions with corresponding degree < s.
Let k1, . . . , kn+1 be a specific choice of natural numbers. The formula in Equation (29) is semantically trivial by
construction, since it asserts the right-uniqueness (or functionality) of the relation RΦ ⊆ Nn ×N. It can be proved
for both cases (PR4 and PR5) using the induction hypothesis. However, formalizing this proof in P would require
considerable effort, so we omit this step. Regarding Equation (28): If we are in the case of PR4 (i.e. Equation (26)),
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define g1, . . . , gm ∈ N by gi := gi(k1, . . . , kn). By the induction hypothesis, we have:

Φ(k1, . . . , kn+1) =⇒ ΦU (g1, . . . , gm, kn+1) ∧ ΦS 1 (k1, . . . , kn, g1) ∧ . . . ∧ ΦS m (k1, . . . , kn, gm)

=⇒ P ⊢ φU
(
g1, . . . , gm, kn+1

)
∧ φS 1

(
k1, . . . , kn, g1

)
∧ . . . ∧ φS m

(
k1, . . . , kn, gm

)
=⇒ P ⊢ ∃z1, . . . , zm φU

(
z1, . . . , zm, kn+1

)
∧ φS 1

(
k1, . . . , kn, z1

)
∧ . . . ∧ φS m

(
k1, . . . , kn, zm

)︸                                                                                                      ︷︷                                                                                                      ︸
=φ
(
k1,...,kn+1

)
This proves the left side of Equation (28). Next, suppose k1, . . . , kn+1 are such that Φ(k1, . . . , kn+1) does not hold.
Let b = f (k1, . . . , kn). By definition, we have Φ(k1, . . . , kn, b) and b ̸= kn+1 and therefore:

P ⊢ φ
(

k1, . . . , kn, b
)

and P ⊢ ¬
(
kn+1 = b

)
Moreover, applying the specialization rule (L6) to Equation (29) yields:

P ⊢ ¬
(
kn+1 = b

)
∧ φ
(

k1, . . . , kn, b
)
→ ¬φ

(
k1, . . . , kn+1

)
Using modus ponens in P then shows P ⊢ ¬φ

(
k1, . . . , kn+1

)
. This was the right side of Equation (28). We can

apply the same kind of argument if we are in the case of PR5 (Equation (27)). Note that for a fixed k1, the
formula φ

{
α1 7→ k1

}
can be rewritten to only include existential quantifiers. This concludes our proof. □

It should be noted that the diagonal lemma, often mentioned in connection with Gödel’s incompleteness theorem,
was not necessary for the proof itself. The famous concept of a proposition asserting its own unprovability is found
only in a proof sketch that Gödel included at the beginning of his paper. However, this argument was later used in a
more formal way by the American mathematician J. Barkley Rosser to refine the first incompleteness theorem.

2.4 Rosser’s Trick

In 1936, Rosser improved Gödel’s result by weakening the requirement of Theorem 2.3.10 from ω-consistency to
consistency. Rosser used a trick where he defined a new provability relation which is equivalent to Bewχ if the
underlying theory is consistent, but which has a favorable property. In this section we will present his proof. The
key ideas of this section can be found, for example, in [Pro21] and [Ros36].

Definition 2.4.1. By Theorem 2.2.13 there exists a formula φBχ in P with free variables α1, α2 such that

(n, k) ∈ Bχ ⇐⇒ n Bχ k =⇒ Bew
(

Sb
(
⌜φBχ⌝,Φ(α1), ⌜n⌝,Φ(α2), ⌜k⌝

))
⇐⇒ P ⊢ φBχ

(
n, k
)

(n, k) ̸∈ Bχ ⇐⇒ ¬ n Bχ k =⇒ Bew
(

Neg
(

Sb
(
⌜φBχ⌝,Φ(α1), ⌜n⌝,Φ(α2), ⌜k⌝

) ))
⇐⇒ P ⊢ ¬φBχ

(
n, k
)

Furthermore, since the relation
(n, k) ∈ BχN :⇐⇒ n Bχ Neg(k)

is primitive recursive, there is a formula φBχN with free variables α1, α2 such that:

n Bχ Neg(k) =⇒ Bew
(

Sb
(
⌜φBχN⌝,Φ(α1), ⌜n⌝,Φ(α2), ⌜k⌝

))
⇐⇒ P ⊢ φBχN

(
n, k
)

¬ n Bχ Neg(k) =⇒ Bew
(

Neg
(

Sb
(
⌜φBχN⌝,Φ(α1), ⌜n⌝,Φ(α2), ⌜k⌝

) ))
⇐⇒ P ⊢ ¬φBχN

(
n, k
)

We define the following formulas in P:

• φBR
χ
(α1, α2) := φBχ(α1, α2) ∧ ∀α3

(
(α3 ≤ α1)→ ¬φBχN (α3, α2)

)
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• φBR
χN

(α4, α2) := φBχN (α4, α2) ∧ ∀α5
(
(α5 ≤ α4)→ ¬φBχ(α5, α2)

)
• ψ(α2) := ∃α1 φBR

χ
(α1, α2)

• ψN(α2) := ∃α4 φBR
χN

(α4, α2)

Let n, k ∈ N. The formula φBR
χ

(
n, k
)

in some sense states that n is a PROOF of k and that there is no natural
number l, smaller than or equal to n, such that l is a PROOF of the NEGATION of k. If we assume P∪χ to be consistent,
this is of course equivalent to the statement that n is a PROOF of k.

Lemma 2.4.2. We have the following result:

P ∪ χ ⊢ ψ(α2)→ ¬ψN(α2)

Proof. We will show P ⊢ ¬(ψ(α2) ∧ ψN(α2)). The formula ¬((α1 > α4) ∧ (α1 < α4)) as well as the following

•
[
φBχ(α1, α2) ∧ ∀α5

(
(α5 ≤ α4)→ ¬φBχ(α5, α2)

)]
→ α1 > α4

•
[
∀α3
(
(α3 ≤ α1)→ ¬φBχN (α3, α2)

)
∧ φBχN (α4, α2)

]
→ α1 < α4

are obviously provable in P. Thus, P can prove the following formula:

¬

[[
φBχ(α1, α2) ∧ ∀α5

(
(α5 ≤ α4)→ ¬φBχ(α5, α2)

)]
∧
[
∀α3
(
(α3 ≤ α1)→ ¬φBχN (α3, α2)

)
∧ φBχN (α4, α2)

]]
By rearranging terms, one can easily see that the above formula is equivalent to ¬(φBR

χ
(α1, α2) ∧ φBR

χN
(α4, α2)).

Applying the generalization rule G in P for the free variables α1, α4, thus yields:

P ⊢ ¬∃α4 ∃α1 φBR
χ
(α1, α2) ∧ φBR

χN
(α4, α2)

Finally, by rearranging terms (see L7) and using the definition of ψ, ψN , we get P ⊢ ¬(ψ(α2) ∧ ψN(α2)). □

We also have the following result.

Lemma 2.4.3. (Diagonal lemma) Let λ be a class sign. There exists a sentence ρ in P ∪ χ such that

P ∪ χ ⊢ ρ↔ λ
(
⌜ρ⌝
)
.

If λ is arithmetical, we can choose ρ to be arithmetical.

Proof. We will use an adapted version of the proof found in [BBJ02]. First, bring every class sign of P ∪ χ with
free variable x1 in order, e.g. by using their Gödel number. We denote γk for the k-th class sign with free variable x1.
Let us define the corresponding function fγ:

fγ(k) := ⌜γk⌝ .

One can easily see that the formulas φr ≡ ∀αr+1 (x1 = αr+1) are class signs with increasing Gödel numbers ⌜φ1⌝ <
⌜φ2⌝ < . . . , and thus ⌜γk⌝ ≤ ⌜φk⌝. Note that the function calculating ⌜φk⌝ for a given k is primitive recursive. As
a result, one could easily construct a primitive recursive function, that loops through all natural numbers ≤ ⌜φk⌝
and outputs the k-th number corresponding to a class sign with free variable x1. We can conclude that fγ and thus
diag(n) is primitive recursive, where diag(n) is defined as:

diag(n) := Sb( fγ(n), 19,Z(n)) = ⌜γn (n) ⌝ .
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In the proof of Theorem 2.3.10 we have seen how to construct an arithmetical formula δ with free variables α1, α2
such that for all k1, k2 ∈ N:

k2 = diag(k1) =⇒ P ∪ χ ⊢ δ
(
k1, k2

)
and k2 ̸= diag(k1) =⇒ P ∪ χ ⊢ ¬δ

(
k1, k2

)
P ∪ χ ⊢ ∀α2

[
¬
(
α2 = k2

)
∧ δ
(
k1, k2

)
→ ¬δ

(
k1, α2

)]
(30)

Using this formula δ, we define a new class sign ϕ by ϕ(x1) := ∃α2 δ(x1, α2) ∧ λ(α2). Let q be the natural number
such that γq = ϕ and set ρ := ϕ (q). This is the closed formula we were looking for: We have

⌜ρ⌝ = ⌜ϕ (q) ⌝ = ⌜γq (q) ⌝ = diag(q) ,

and thus,
P ∪ χ ⊢ δ

(
q, ⌜ρ⌝

)
. (31)

Furthermore, using Equations (30) and (31), one can show:

P ∪ χ ⊢
[
∃α2 δ(q, α2) ∧ λ(α2)

]
→ δ
(
q, ⌜ρ⌝

)
∧ λ
(
⌜ρ⌝
)
. (32)

Although constructing such a proof in P does not cause any technical difficulties, it is a formally extensive process
and we shall skip this part. Nevertheless, the reader can easily see why this statement is plausible. Next, P ∪ χ can
prove ρ→ ρ and thus by definition:

P ∪ χ ⊢ ρ→
[
∃α2 δ(q, α2) ∧ λ(α2)

]
. (33)

Combining Equations (33) and (32) yields

P ∪ χ ⊢ ρ→ δ
(
q, ⌜ρ⌝

)
∧ λ
(
⌜ρ⌝
)
.

Hence,
P ∪ χ ⊢ ρ→ λ

(
⌜ρ⌝
)
.

Conversely, using Equation (31) we get:

P ∪ χ ⊢ λ
(
⌜ρ⌝
)
→
[
δ
(
q, ⌜ρ⌝

)
∧ λ
(
⌜ρ⌝
) ]
.

Moreover, by existential generalization, we have

P ∪ χ ⊢
[
δ
(
q, ⌜ρ⌝

)
∧ λ
(
⌜ρ⌝
) ]
→
[
∃α2 δ(q, α2) ∧ λ(α2)

]
.

Hence,
P ∪ χ ⊢ λ

(
⌜ρ⌝
)
→
[
∃α2 δ(q, α2) ∧ λ(α2)

]
.

But the right side in the above formula is exactly ϕ (q) = ρ. This was to be shown. □

We can now proof the main theorem of this section:

Theorem 2.4.4. (First incompleteness theorem, Rosser 1936) If P ∪ χ is consistent and χ is primitive recursive,
then there exist undecidable arithmetical propositions in P ∪ χ.

Proof. First, suppose ϕ is a provable formula in P∪χ, i.e. P∪χ ⊢ ϕ. By definition, there exists a natural number n ∈ N
such that n is the PROOF of ⌜ϕ⌝, hence n Bχ ⌜ϕ⌝. Since P ∪ χ is consistent, we know that ¬m Bχ Neg(⌜ϕ⌝) holds
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for all m. Thus, by Definition 2.4.1, we have:

P ∪ χ ⊢ φBχ

(
n, ⌜ϕ⌝

)
, and for all m = 1, . . . , n : P ∪ χ ⊢ ¬φBχN

(
m, ⌜ϕ⌝

)
.

Consequently, we get
P ∪ χ ⊢ φBχ

(
n, ⌜ϕ⌝

)
∧ ∀α3

(
(α3 ≤ n)→ ¬φBχN

(
α3, ⌜ϕ⌝

))
,

which is the same as P ∪ χ ⊢ φBR
χ

(
n, ⌜ϕ⌝

)
. Using existential generalization, we get P ∪ χ ⊢ ψ

(
⌜ϕ⌝
)
. The same

argument can be applied to ψN if ¬ϕ is provable. Hence, we have seen that:

if P ∪ χ ⊢ ϕ, then: P ∪ χ ⊢ ψ
(
⌜ϕ⌝
)
, if P ∪ χ ⊢ ¬ϕ, then: P ∪ χ ⊢ ψN

(
⌜ϕ⌝
)
. (34)

According to Lemma 2.4.3, let ρ be a sentence such that

P ∪ χ ⊢ ρ↔ ¬ψ
(
⌜ρ⌝
)
. (35)

We will show that neither P ∪ χ ⊢ ρ nor P ∪ χ ⊢ ¬ρ hold.

1. P ∪ χ ̸⊢ ρ

Suppose P ∪ χ ⊢ ρ. Then, by Equation (34), we would have

P ∪ χ ⊢ ψ
(
⌜ρ⌝
)
.

By Equation (35) we have
P ∪ χ ⊢ ψ

(
⌜ρ⌝
)
→ ¬ρ .

But by modus ponens in P ∪ χ we could then conclude

P ∪ χ ⊢ ¬ρ ,

which contradicts the consistency of P ∪ χ.

2. P ∪ χ ̸⊢ ¬ρ

Suppose P ∪ χ ⊢ ¬ρ. Then, by Equation (34), we would obtain

P ∪ χ ⊢ ψN
(
⌜ρ⌝
)
.

By the contraposition of Lemma 2.4.2 we get

P ∪ χ ⊢ ψN
(
⌜ρ⌝
)
→ ¬ψ

(
⌜ρ⌝
)
.

Thus, by modus ponens in P ∪ χ, we would have

P ∪ χ ⊢ ¬ψ
(
⌜ρ⌝
)
.

However, by Equation (35), we also have

P ∪ χ ⊢ ¬ψ
(
⌜ρ⌝
)
→ ρ ,

and could thus conclude
P ∪ χ ⊢ ρ ,

which again contradicts the consistency of P ∪ χ. □
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Note that the second case is longer than the first. This is because the first case can be proved similarly using the
standard proof predicate introduced by Gödel. The properties of Rosser’s new proof predicate are only needed in
the second case and allow us to drop the ω-consistency requirement.
We used the following properties of P ∪ χ in the proof of Theorem 2.4.4:

1. The theory should be consistent. This is not surprising, as an inconsistent theory can prove any statement
and as such is trivially complete.

2. The Gödel numbers of the axioms in the theory should form a primitive recursive set. This requirement
is not restrictive in practice. If the set were not primitive recursive and we were presented with a supposed
proof in the theory, we would have no effective way of verifying that proof. As such, theories without this
property are usually not of interest.

3. The theory should be able to speak about the natural numbers. This is necessary, since the undecidable
sentence ρwas an arithmetical formula. However, any theory that aims to provide a foundation for mathematics
is naturally able to capture simple number theory.

One can show that these three conditions are indeed sufficient to prove the first incompleteness theorem. The version
found in modern textbooks can be formulated as follows:

Theorem 2.4.5. (First incompleteness theorem, Robinson) Let T be a formal theory that includes the Robinson
arithmetic Q. If T is consistent and the set of axioms A is primitive recursive, then T is incomplete.

By A primitive recursive, we mean that there is a Gödel coding for T such that the set of Gödel numbers of
the elements of A is primitive recursive. In combination with Gödel’s completeness theorem (Theorem 1.6.5), we
obtain the following result for theories of first-order:

Theorem 2.4.6. Let T be a first-order theory containing the Robinson arithmetic Q. If T is consistent and the set of
axioms A is primitive recursive, then there exists a sentence ρ and two models M1,M2 of T, such that

M1 |= ρ and M2 ̸|= ρ .

2.5 The Second Incompleteness Theorem

In what is now known as the second incompleteness theorem, Gödel demonstrated a somewhat strange consequence
of his first incompleteness theorem:

Theorem 2.5.1. (Second incompleteness theorem, Gödel 1931) Let χ be primitive recursive. If P ∪ χ can prove its
own consistency then it is inconsistent.

Proof. In his original work, Gödel presented the following proof sketch: Let Widχ be a sentence in our metalanguage
stating that P ∪ χ is consistent, e.g.

Widχ = ∀n
(
n, ⌜0 = S(0)⌝

)
̸∈ Bχ .

In Theorem 2.3.3 we only used consistency to prove ¬Bewχ (Gen (19, r)), thus:

Widχ =⇒ ¬Bewχ (Gen (19, r)) .

By Equation (20) and the definition of Bewχ, this is the same as:

Widχ =⇒ ∀k ∈ N :
(
k,Sb (p, 23,Z(p))

)
̸∈ Bχ .
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By Equation (16) this is equivalent to:

Widχ =⇒ ∀k ∈ N : (k, p) ∈ Q .

Let us assume that this whole proof can be formalized within P. By Equation (17) and (19) we can represent the
formula ∀k ∈ N : (k, p) ∈ Q in P as Gen (19, r). Let w ∈ N be the SENTENTIAL FORMULA in P describing Widχ.
Define the primitive recursive function Impl(•, •) as follows:

Impl (⌜φ1⌝, ⌜φ2⌝) := ⌜φ1 → φ2⌝ .

Translating the above proof to P, we therefore obtain:

Impl (w,Gen (19, r)) ∈ Flg ( χ) .

If P ∪ χ could prove its own consistency, we would have w ∈ Flg ( χ) and thus Gen (19, r) ∈ Flg ( χ). However, this
was shown to be impossible in Theorem 2.3.3 if P ∪ χ is consistent. □

To carry out this proof sketch, Gödel announced a continuation of his work, which, however, never appeared.
We will instead derive Gödel’s second incompleteness theorem as a corollary to Löb’s theorem.

Theorem 2.5.2. (Löb’s theorem, 1955) Let T be a formal theory containing a representation of the natural numbers
and with a Gödel coding, denoted as n and ⌜φ⌝ respectively. For any formula φ we write #φ := ⌜φ⌝. Suppose that
the diagonal lemma as in Lemma 2.4.3 holds for T. Moreover, let ψ be a formula in T with one free variable, so that
for any two formulas φ, ϕ the following statements hold:

A1: T ⊢ φ =⇒ T ⊢ ψ( #φ)

A2: T ⊢ ψ( # (φ→ ϕ))→ (ψ( #φ)→ ψ( # ϕ))

A3: T ⊢ ψ( #φ)→ ψ( # ψ( #φ))

In this case, we have:
T ⊢ ψ( #φ)→ φ =⇒ T ⊢ φ .

Proof. We follow [Men97]. Suppose T ⊢ ψ( #φ) → φ holds. By the diagonal lemma there is a formula ρ such
that T ⊢ ρ↔ (ψ( # ρ)→ φ). We can give the following proof in T:

Proof of: φ

1. ψ( #φ)→ φ Assumption
2. (ψ( # ρ)→ φ)→ ρ Diagonal lemma
3. ρ→ (ψ( # ρ)→ φ) Diagonal lemma
4. ψ( # (ρ→ (ψ( # ρ)→ φ))) A1 & formula 3
5. ψ( # (ρ→ (ψ( # ρ)→ φ)))→ [ψ( # ρ)→ ψ( # (ψ( # ρ)→ φ))] A2
6. ψ( # ρ)→ ψ( # (ψ( # ρ)→ φ)) MP(4,5)
7. ψ( # (ψ( # ρ)→ φ))→ [ψ( #ψ( # ρ))→ ψ( #φ)] A2
8. ψ( # ρ)→ [ψ( #ψ( # ρ))→ ψ( #φ)] TR(6,7)
9. ψ( #ψ( # ρ))→ [ψ( # ρ)→ ψ( #φ)] AS(8)

10. ψ( # ρ)→ ψ( #ψ( # ρ)) A3
11. ψ( # ρ)→ [ψ( # ρ)→ ψ( #φ)] TR(10,9)
12. ψ( # ρ)→ ψ( #φ) trivial from 11
13. ψ( # ρ)→ φ TR(12, 1)
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Proof of: φ (continuation)
14. ρ MP(13,2)
15. ψ( # ρ) A1 & formula 14
16. φ MP(15, 13) □

Recall the formula ψ we constructed for Rosser’s trick, see Definition 2.4.1. In the proof of Theorem 2.4.4, we
showed that property A1 holds for this ψ, see Equation (34). One can prove that A2 and A3 also hold. Moreover,
similar to ψ for P, one can construct a formula ψBew for the system PA which semantically describes whether a
given FORMULA is provable (in PA). It is then again possible to show that the properties A1-A3 hold for ψBew.
Furthermore, one can show that the diagonal lemma holds for PA. Löb’s theorem thus states for any PA-formula φ:

PA ⊢ ψBew
(
⌜φ⌝
)
→ φ =⇒ PA ⊢ φ (36)

Informally, Equation (36) claims: If φ is some formula in PA and PA can prove that the existence of a proof of φ
implies φ, then φ is provable. Alternatively, we can use the contraposition to restate the equation as follows: If PA
cannot prove φ, then it cannot prove that the existence of a proof of φ would imply φ. For a visually engaging
explanation of this remarkable result, we recommend a “Cartoon Guide to Löb’s Theorem”, see [Yud08].

Theorem 2.5.3. (Second incompleteness theorem, PA) If PA is consistent, it cannot prove its own consistency:

PA ̸⊢ ¬ψBew
(
⌜0 = S(0)⌝

)
.

Proof. Suppose PA ⊢ ¬ψBew
(
⌜0 = S(0)⌝

)
. Using L2 in PA, we get:

PA ⊢ ψBew
(
⌜0 = S(0)⌝

)
→ (0 = S(0)) .

Hence, by Equation (36):
PA ⊢ (0 = S(0)) .

But we also have PA ⊢ ¬(0 = S(0)), which means that PA must be inconsistent. □

Example 2.5.4. Using the second incompleteness theorem, we can construct a consistent but ω-inconsistent theory:

T := PA +
{
ψBew

(
⌜0 = S(0)⌝

) }
:=
(
LPA, APA ∪

{
ψBew

(
⌜0 = S(0)⌝

) } )
.

Let us assume the consistency of PA. The theory T is consistent, for if it were not, we would have:

PA +
{
ψBew

(
⌜0 = S(0)⌝

) }
⊢ 0 = S(0) .

The deduction theorem, see Theorem 1.4.4, would imply:

PA ⊢ ψBew
(
⌜0 = S(0)⌝

)
→ 0 = S(0) .

Hence, by Löb’s theorem, we would get:
PA ⊢ 0 = S(0) ,

which is impossible by assumption. Thus T is consistent. However, the theory is ω-inconsistent. Let ψB(n, k)
be the formula in LPA asserting that n is a PROOF of k in PA. Since we assumed PA to be consistent, there
cannot exist a Gödel number of a proof of (0 = 1) in PA and thus the primitive recursive function corresponding
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to ψB
(

n, ⌜0 = S(0)⌝
)

will not evaluate to 0 for any natural number n. Therefore, we have:

for all n ∈ N , PA +
{
ψBew

(
⌜0 = S(0)⌝

) }
⊢ ¬ψB

(
n, ⌜0 = S(0)⌝

)
.

At the same time, using the definition of ∃ and ψBew, we have:

PA +
{
ψBew

(
⌜0 = S(0)⌝

) }
⊢ ¬∀x ¬ψB

(
x, ⌜0 = S(0)⌝

)
.

Since both statements are true at the same time, T is ω-inconsistent. Note that by the model existence theorem, see
Theorem 1.7.3, there are structures that satisfy all axioms of T. However, such a model is, in a sense, convinced that
it does not exist. Because of this bizarre phenomenon, such models are also called self-hating.

One can show that Gödel’s second incompleteness theorem holds for all common systems more expressive
than PA. In particular, it holds for the set theoretic systems ZF and ZFC, which we will discuss in the next chapter.
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3 BB(745) and Undecidability in ZFC – Exploring the Limits of Set Theory

In the last part of this paper, we will provide a concrete and accessible example of an undecidable proposition
in ZFC, the system that serves as a possible foundation for most of contemporary mathematics. To accomplish this,
we first introduce the notion of Turing machines and the Busy Beaver function, followed by the formulation of the
undecidable proposition and its proof of undecidability. Finally, we will improve the result and give perspectives on
unsuccessful attempts.

3.1 Computability and Turing Machines

We begin with a formal definition of Turing machines. This is continued with an illustrative interpretation. We
follow [De 21] for general ideas and notation, but use our own formal definitions.

Definition 3.1.1. (Turing machines) A Turing machine TM is defined as a triple TM = (s,Σ, δ) where

• s is a natural number, s ≥ 1,

• Σ ∋ 0 is a finite set of symbols (containing 0),

• δ:
(
{1, . . . , s} × Σ

)
→
(
Σ × {−1, 1} × {0, 1, . . . , s}

)
is a function, called transition function.

For a given Turing machine TM, we say that TM has s states (or TM is an s-state Turing machine). Furthermore, let
TP = (ai)i∈Z ⊆ Σ be a sequence indexed by the integers. If ai = 0 for almost all i ∈ Z, we call TP a tape of TM and
define the functions PTP,TM(k), TPTM(k, i),OTP,TM(k) by mutual recursion:

PTP,TM(0) = 0 and PTP,TM(k) = PTP,TM(k − 1) + OTP,TM(k)2 for k > 0

TPTM(0, i) = ai and TPTM(k, i) =

 OTP,TM(k)1 if i = PTP,TM(k − 1)
TPTM(k − 1, i) if i ̸= PTP,TM(k − 1)

 for k > 0

OTP,TM(1) = δ (1, a0) and OTP,TM(k + 1) =


(
TPTM(k, PTP,TM(k)), 0, 0

)
if OTP,TM(k)3 = 0

δ
(
OTP,TM(k)3, TPTM(k, PTP,TM(k))

)
if OTP,TM(k)3 ̸= 0

 for k > 0

The sequence (TPTM(k, i))i∈N describes the tape and the function OTP,TM(k)3 the state of the Turing machine TM after
computation step k. If there is no k ∈ N such that OTP,TM(k)3 = 0, we say that TM will LOOP. Otherwise, we say that
TM will HALT. In this case, we define the running time of TM with input TP as:

rt (TM, TP) := min {k ∈ N | OTP,TM(k)3 = 0}

Furthermore, to talk about the behavior of a Turing machine TM given the input TP, we write TM[TP].

The above definition has the following visual interpretation: A Turing machine consists of an infinite two-sided
tape divided into cells that can be written on, a head that can move along the tape, and a finite set of states that
determine how the machine behaves. Based on a list of rules (the transition function δ), the machine reads the
symbol in the current cell, updates its state, writes a new symbol to the tape, and moves the head one cell to the left
or right. The machine halts when it enters the 0 state. The symbols that can be written to the tape form the set Σ, the
input tape is defined by the sequence TP, and the running time is the number of calculation steps before the machine
halts (if it ever halts). See Figure 1 for an illustration. For clarity, we will work with this representation instead of
the formal definition. Moreover, for our purposes, we will only allow the symbols Σ = {0, 1}. Unless otherwise
specified, we will assume that the input tape TP is empty, i.e., is filled with 0’s (TP ≡ 0). We will describe a Turing
machine by defining its transition function δ as a list of ordered tuples:(

σi
0, d

i
0, s

i
0, σ

i
1, d

i
1, s

i
1

)
∈ {0, 1} × {L,R} × {0, 1, . . . , s} × {0, 1} × {L,R} × {0, 1, . . . , s} ,
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Figure 1: An illustration of a Turing machine. In this case, the head will read the current symbol (1) and, given its
state (02), will decide that it should overwrite this cell with 0, move one cell to the left, and change the state to 44.

for every state i = 1, . . . , s. When the machine is in state i and the current cell has the value r ∈ {0, 1}, the machine
changes its state to si

r, overwrites the current symbol with σi
r, and moves the head one cell in the direction di

r. If it
improves readability, we may also use a notation with leading zeros as in Figure 1.
The notion of Turing machines allows us to give a definition of computable functions:

Definition 3.1.2. (Computable functions) A function f :Nk → Nm is said to be computable if there are two effective
functions Ik, I−1

m that map each input (n1, . . . , nk) ∈ Nk to a corresponding tape Ik(n1, . . . , nk) and each resulting
output tape to a tuple (n1, . . . , nm) ∈ Nm. Moreover, there exists a Turing machine TM f which halts at any input of
the form Ik(n1, . . . , nk) and outputs a tape whose interpretation (using I−1

m ) is f (n1, . . . , nk):

I−1
m

(
Ik(n1, . . . , nk) TM f

(
rt(TM f , Ik(n1, . . . , nk)), i

))
= f (n1, . . . , nk)

In other words, a function f is computable if there exists a Turing machine that can compute it.

We will not formally define the notion of effective functions as used in the above definition. It is needed to
guarantee that the actual computation of f is done by the Turing machine and is not hidden in Ik or I−1

m . For
definiteness and for the purpose of an official definition, we fix Ik to be as follows. First we define I1:

I1(n) := (ai)i∈Z , where a1 = · · · = an = 1 and ai = 0 , else.

If Ik has already been defined for some k ∈ N, we set:

Ik+1(n1, . . . , nk+1) :=
(
Ik(n1, . . . , nk)i + I1(nk+1)i−s−1

)
i∈Z

, where s = max { j ∈ N | Ik(n1, . . . , nk) j = 1}.

In other words, we describe one natural number as a sequence of consecutive 1’s, starting at the cell indexed with 1.
For several natural numbers, we separate these sequences by a single 0 cell. The function I−1

m is defined as the
inverse function of Im for appropriate tapes. Arguably, this method of translating natural numbers into input tapes
and output tapes into natural numbers is intuitively effective.

The Church–Turing thesis states that the class of computable functions is the same as the class of intuitively
computable functions. Although this is not a formal statement that can be proved or disproved, it is widely accepted
by computer scientists. The thesis suggests that a function that cannot be computed by a Turing machine cannot be
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computed by any form of sophisticated technology.

Lemma 3.1.3. Every primitive recursive function is computable.

Proof. We have seen in Section 2.2 how to translate primitive recursive functions into (Python) code. Thus, by the
Church–Turing thesis, the lemma follows. □

The following example shows that not every function is computable:

Theorem 3.1.4. (Halting Problem) There is no computable function that can determine, for an arbitrary Turing
machine TM, whether TM will eventually halt or loop forever when given the empty tape as input.

Proof. We will show that there is no computable function capable of determining whether a given Turing machine
halts on a given tape as its input. This result is actually equivalent to our theorem, as every finite tape corresponds to
some Turing machine that takes an empty tape as input and produces that tape as output. The key idea of this proof
is found for example in [De 21], but we will present a more detailed argument.

The set of Turing machines and the set of tapes are countable, i.e. there are enumerations for both sets. We
denote the natural numbers corresponding to the Turing machine TM and the tape TP by nTM and nTP, respectively.
We can choose the enumerations to be effective, i.e., in particular, such that

k 7→ nI1(k) (37)

is computable. Our goal is to demonstrate that the function

f (nTM, nTP) =

 1, if TM loops with input TP
0, if TM halts with input TP

is not computable. Let us assume the opposite. By definition, this implies the existence of a Turing machine TMH

such that

TMH[I2(nTM, nTP)] outputs:

 1 ≡ (. . . , 0, a1 = 1, 0, . . . ), if TM loops with input TP
0 ≡ (. . . , 0, 0, 0 . . . ), if TM halts with input TP

By Equation (37), there exists a Turing machine TMT that halts on each tape of the form I1(nTM) and outputs

I2
(
nTM, nI1(nTM)

)
.

Thus one can construct a Turing machine TMG with

TMG[I1(nTM)]

 halts, if TM loops with input I1(nTM)
loops, if TM halts with input I1(nTM)

To obtain such a machine, first, simulate TMT on the input I1(nTM) and let TMH run on the resulting output. One can
add a subroutine to TMH that searches the tape for a 1 and halts if and only if it finds one. Instead of allowing TMH to
enter the halting state directly, let it first enter the subroutine. This combination of Turing machines produces a new
Turing machine with the desired property.

Since TMG is a Turing machine, there exists a natural number nTMG , and thus a well-defined tape I1(nTMG ). If we
ask whether TMG halts on the input I1(nTMG ), we obtain a contradiction: If it halts, then, by definition, TMG loops
with input I1(nTMG ). On the other hand, if it loops, it must halt. □

Using the notation introduced in the last theorem, we also have the following result.

55



Lemma 3.1.5. There is a primitive recursive function f (k, nTM, nTP) that simulates TM[TP] for k steps and outputs
the resulting tape. Furthermore, there is a primitive recursive relation r(k, nTM, nTP) that holds if and only if TM[TP]
halts within the first k steps.

Proof. We will not provide a detailed demonstration. It is possible to construct a one-step Turing machine simulator
using the techniques outlined in Section 2.2. This simulator executes a given machine and tape (represented as
natural numbers) for precisely one step. Using this function, one can easily derive f and r. □

3.2 The Busy Beaver Function

In this section, we follow [Aar20]. For any natural number s, the set of s-state Turing machines is finite. Among
them, some will eventually halt (when given the empty tape as input ) after a finite number of computation steps
while the others will loop forever. Hence, there exists a natural number that represents the maximum number of
steps a non-looping s-state Turing machine can run before halting:

Definition 3.2.1. Let s be a natural number. If it exists, the s-th Busy Beaver number is defined as:

BB(s) := max{rt(TM) | TM is an s-state Turing machine that halts}

Note that the set on the right is nonempty for all s > 0: We can always construct a halting Turing machine with
s states by setting the first state to

1 : (0, L, 0, 0, L, 0) ,

and the remaining s − 1 states arbitrarily. This will yield a Turing machine that halts after exactly one calculation
step. Thus, we may define:

Definition 3.2.2. (Busy Beaver function) The (well-defined) function

BB:N>0 → N, n 7→ BB(n) ,

is called Busy Beaver function. An s-state Turing machine with running time BB(s) is called s-state Busy Beaver.

Example 3.2.3. The first Busy Beaver number is equal to 1 (i.e. BB(1) = 1).

Proof. Notice that a 1-state Turing machine TM of the form

1 : (∗, ∗, 0, ∗, ∗, ∗)

will always have running time rt(TM) = 1 when given an empty tape as input. On the other hand, a 1-state Turing
machine of the form

1 :
(
∗, d1

0, 1, ∗, ∗, ∗
)
,

behaves as follows when given an empty tape as input: It writes down some symbol, moves the head one step in the
direction d1

0, writes down a symbol, moves the head in the direction d1
0, writes down a symbol, and so on. Therefore,

such a machine will loop whenever it receives an empty tape as input. Consequently, we get BB(1) = 1. □

Lemma 3.2.4. The Busy Beaver function is strictly increasing.

Proof. Let k > 0 and let TM be a k-state Busy Beaver. We start by defining a new state:

k + 1 : (0, L, 0, 0, L, 0) .
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Next, we modify TM so that it enters this new state instead of the halting state. To be precise, in every state

i :
(
σi

0, d
i
0, s

i
0, σ

i
1, d

i
1, s

i
1

)
of TM, we replace si

0 by k + 1 if si
0 = 0 and si

1 by k + 1 if si
1 = 0. By construction, the resulting Turing machine

has k + 1 states and a running time of BB(k) + 1. Thus, BB(k + 1) ≥ BB(k) + 1 > BB(k). □

Lemma 3.2.5. If f :N→ N is a computable function, there is an N ∈ N such that

f (n) < BB(n)

for all n ≥ N. In particular, BB(•) is not computable.

Proof. We will show this lemma using a similar proof idea as in [Aar20]. Let f be a fixed computable function. We
define the following Turing machines:

TM f : I1(n) 7→ I1( f (n)) [c states]

TM1 : I2(n, k) 7→ I1
(
n2 + k

)
[d states]

TMr,k : I1(0) 7→ I2(r, k) [r + k + 4 states]

The machine TMr,k (for r, k > 1) can be designed as follows: First, use r + k + 2 states to print I2(r, k) on the tape and
position the head over the cell one to the left of the last 1-cell. Next, use additional two states to move the head back
to the 0-th cell by checking for two consecutive 0-cells. As with TMr,k, we can assume that TM f and TM1 are also
designed to halt at the zeroth cell. Note that c, d are constants and do not depend on the input of the machines. For a
given n ∈ N, we design the following new machine:

TM f ,n := TM f ◦ TM1 ◦ TMr,k ,

where r :=
⌊√

n
⌋

and k := n− r2. With the composition symbol ◦ we indicate that the Turing machines are executed
one after the other. This procedure can be summarized in an obvious way to a Turing machine with c + d + r + k + 4
states which we call TM f ,n. We have the following estimations:

n =
(√

n
)2
≤ (r + 1)2 = r2 + 2r + 1 =⇒ k = n − r2 ≤ 2r + 1 .

Therefore, TM f ,n is a Turing machine, with less than or equal to c + d + 5 + 3r < q + 3r states, for some constant q,
and that given the empty tape as an input, will output I1( f (n)). In particular, this machine will run for at least f (n)
steps before halting. Choose N ∈ N big enough such that n ≥ q + 3

√
n for all n ≥ N. We then have

BB(n) ≥ BB(q + 3r) > BB(c + d + 5 + 3r) ≥ rt
(
TM f ,n

)
≥ f (n) ,

for all n ≥ N. This was to be demonstrated. □

We can immediately improve this result:

Lemma 3.2.6. The Busy Beaver function grows faster than any computable function. To be more precise, if f is a
computable function, we have

lim
n→∞

BB(n)
f (n)

= ∞ .
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Proof. Let C ∈ N be any natural number. The function C · f is computable and thus, by the previous lemma, there
is a natural number N(C) ∈ N such that

BB(n) > C · f (n) ⇐⇒
BB(n)

f (n)
> C ,

for all n ≥ N(C). Since C was arbitrary, the lemma follows. □

Not only can we not compute BB(n) for almost all n ∈ N by finite means; for sufficiently large n, even if we had
the correct value k := BB(n), we could not prove that BB(n) = k. This is captured by Theorem 3.2.7.

Theorem 3.2.7. Let T be a consistent and primitive recursive theory. If T includes Peano arithmetic, there exists a
natural number NT such that for all n ≥ NT ,

T ̸⊢ BB (n) = BB (n) .

Proof. Since T is primitive recursive, we can construct a Turing machine TM that searches for contradictions in T.
More precisely, one can design a proof relation B for T, similar to Theorem 2.2.12, and show that it is primitive
recursive. Next, one can design a Turing machine T that loops through all n ∈ N and halts if and only if it finds one
number n such that

n B ⌜0 = S(0)⌝ .

Thus, TM loops if and only if
¬Bew

(
⌜0 = S(0)⌝

)
. (38)

Let N ∈ N be the state count of TM and n ≥ N. Suppose we had T ⊢ BB (n) = BB (n). Then, using an argument
similar to Lemma 3.1.5, one could show that T could simulate TM for BB (n) ≥ BB (N) steps and prove that TM will
not have halted (this can be asserted from our meta logic, since T is assumed to be consistent). Using the formal
definition of BB in T, the theory could thus conclude that TM will never halt. Moreover, T is expressive enough to
understand (prove) that the statement that TM will never halt is equivalent to Equation (38). Thus, T would be able
to prove its own consistency, which contradicts Gödel’s second incompleteness theorem. □

We will denote by NT the smallest possible number such that the foregoing theorem holds.

3.3 ZF and ZFC

The goal of the remainder of this work will be to find an upper bound on NT for a specific theory. In this section,
two theories are introduced: ZF and ZFC.

Unlike other first-order systems we have seen thus far, set theory allows to quantify over sets. This is achieved
by using sets as objects of the language. By carefully choosing its axioms, one avoids Russell’s antinomy, making it
an alternative solution to type theory. Together with the advantages of first-order theories and the expressiveness
that can be achieved with set theory, this idea provides a promising framework for much of modern mathematics.
Among the most famous such theories are ZF and ZFC, the Zermelo-Fraenkel set theory (without or with the axiom
of choice). In this section, we define a system slightly weaker than ZF, but sufficient to study NZFC.

Our definitions are designed to be implemented in a Turing machine. Therefore, they may differ from the
versions found in textbooks. Readers who want to explore the background of our definitions further may refer
to [ORe16, zf2.nql].

To define a theory and deductive system, we have to specify the language as well as the set of axioms,
the inference rules and the set of logical axioms. We set LZF−R as the first-order language with R = { ∈ },
V = {vi | i ∈ N},C = F = ∅. Next, we define the set of logical axioms:
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Definition 3.3.1. The logical axioms ALo are:

(φ→ ψ)→ ((ψ→ χ)→ (φ→ χ))L1. ((¬φ→ φ)→ φ)L2.

(φ→ (¬φ→ ψ))L3. ∀ξ (φ→ ψ)→ (∀ξ φ→ ∀ξ ψ)L4.

∀ξ ∀ζ φ→ ∀ζ ∀ξ φL5. (∃ξ ∀ξ φ)→ φL6.

∃ξ ξ = ζL7. ξ = ζ → (ξ = ϑ→ ζ = ϑ)L8.

ξ = ζ → (ξ ∈ ϑ→ ζ ∈ ϑ)L9. ξ = ζ → (ϑ ∈ ξ → ϑ ∈ ζ)L10.

[ξ = ζ → ∀ϑ (ξ = ζ)] ∧ [ξ ∈ ζ → ∀ϑ (ξ ∈ ζ)] where ξ ̸= ϑ, ζ ̸= ϑL11.

Note that ξ, ζ, ϑ are meta variables and not part of the language. The above list should be interpreted as a schema.
Like before, our only inference rules are MP and G. Finally, we define the axioms AZF−R of our theory.

Definition 3.3.2. The set AZF−R is given by:

∀v2 (v2 ∈ v0 ↔ v2 ∈ v1)→ v0 = v1ZF1. [
∀v3 ∃v1 ∀v2 (∀v1 φ→ v2 = v1)

]
→
[
∃v1 ∀v2

(
v2 ∈ v1 ↔ ∃v3 (v3 ∈ v0 ∧ ∀v1 φ)

)]
ZF2.

∃v1 ∀v2
(
∀v3 (v3 ∈ v2 → v3 ∈ v0)→ v2 ∈ v1

)
ZF3.

∃v1 ∀v2
(
∃v3 (v2 ∈ v3 ∧ v3 ∈ v0)→ v2 ∈ v1

)
ZF4.

∃v1
[
v0 ∈ v1 ∧ ∀v0

(
v0 ∈ v1 → ∃v2

(
v2 ∈ v1 ∧ ∀v1 (v1 ∈ v2 ↔ v1 = v0)

))]
ZF5.

These axioms are known as axioms of extensionality, replacement, power set, union and infinity, respectively.
We have made use of variable shadowing to keep the formulation simpler for our implementation later on.

The resulting theory will be denoted by TZF−R. If we extend AZF−R by the axiom of regularity, we get the
theory of ZF. If we further extend this system by the axiom of choice, we get the theory of ZFC. However, it can
be shown that TZF−R is consistent if and only if ZFC is consistent (and this proof can be reproduced in ZFC), see
e.g. [Göd38] and [Vau01]. Because of this result, we can work with the simpler system TZF−R for our purposes.

3.4 The Original Paper: BB(7910) and BB(748)

A first upper bound on NZFC was given by Adam Yedidia and Scott Aaronson in [YA16], where they showed
that NZFC ≤ 7910. Unlike in Theorem 3.2.7, they did not construct a Turing machine that tries to find a contradiction
in ZFC. Instead, they used a statement about order-invariant graphs, which Harvey Friedman proved to imply
the consistency of ZFC. To construct a Turing machine that halts if and only if the statement is false, the authors
developed a high-level programming language called Laconic that compiles to Turing machines.

This result was improved by Stefan O’Rear with the introduction of a new high-level language for Turing
machines, NQL (Not-Quite-Laconic), see [ORe16]. Not-Quite-Laconic uses a different compilation method based on
so-called register machines. With his compiler, O’Rear was able to improve the upper bound on NZFC to 1919 by
constructing a proof enumerator. Further improvements to the NQL code resulted in a Turing machine with only 748
states. In the following, we will examine the corresponding code.
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3.4.1 Basic Features of the Code

Every NQL project is built around a main loop that runs forever until a certain condition is met and the program stops.
In our case, the corresponding condition is that a proof of v0 ∈ v0 has been found. Applying the generalization
rule to this statement yields a formula that asserts that every set contains itself; this is easily disproved by TZF−R.
Thus, v0 ∈ v0 can only be proved by TZF−R (i.e., the resulting program only stops) if TZF−R is inconsistent. On
the other hand, if TZF−R is inconsistent, it will prove anything, including v0 ∈ v0, and the machine will therefore
eventually stop. NQL works like one would expect from a simple high-level language. Instead of functions, one can
define procedures, short proc, that act similar to functions. Global variables are supported and can be accessed
from anywhere in the code. Furthermore, the only available data type in NQL is natural numbers. Lists or arrays,
for example, are not supported and need to be implemented by hand. The operation “−” for natural numbers is
supported, however clamps at 0.

3.4.2 Encoding of Formulas and the WFF-Stack

Proofs are managed in Hilbert style with a large stack of proven formulas, the wff-stack (wff = well-formed-
formulas). This stack is updated in each step of a proof and is not cleared between proofs. The algorithm modifies
the stack several times during a proof step, but undoes the modifications if they were not part of the proof step.
After each step, the algorithm checks whether the formula v0 ∈ v0 has been added to the top of the stack. If so, the
program terminates, since this implies the existence of a proof of v0 ∈ v0. Otherwise, it continues with the next
proof step. When the proof is finished, it starts checking the next proof. The wff-stack is represented as a list of
natural numbers, which we can think of as formulas. For technical reasons, the wff-stack is separated into the top
layer, topwff, and the rest of the stack, wffstack. To each well formed formula, we (recursively) assign a natural
number in the following way: ∣∣∣ vi = v j

∣∣∣ { (
( i . j ) . 0

)
∣∣∣ vi ∈ v j

∣∣∣ { (
( i . j ) . 1

)
|φ→ ψ | {

(
( |φ | . |ψ | ) . 2

)
| ¬φ | { ( |φ | . 3 )

| ∀vi φ | {
(

( i . |φ | ) . 4
)

(39)

The notation ( k . n ) signifies Cantor’s pairing function from Lemma 2.2.7. For example, 0 corresponds to the
formula v0 = v0 since

(
( 0 . 0 ) . 0

)
= 0 and 1 corresponds to the formula v0 ∈ v0 since

(
( 0 . 0 ) . 1

)
= 1. The

wff-stack is also constructed using this pairing function. We can think of it as right-to-left oriented, i.e. the nesting
takes place on the right argument. For example, a wff-stack consisting of the formulas a1, . . . , an will be represented
by topwff, wffstack, where:

topwff = an , wffstack =
(

an−1 . ( an−2 . ( . . . ( a2 . a1 ) )
)
.

Items can be added to the wff stack using the pushwff() procedure, or removed using popwff(). Applying
pushwff() to the stack above would result in

topwff = 0 , wffstack =
(

an . ( an−1 . ( . . . ( a2 . a1 ) )
)
.

Conversely, applying popwff() would yield:

topwff = an−1 , wffstack =
(

an−2 . ( an−3 . ( . . . ( a2 . a1 ) )
)
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Hence, this stack follows the LIFO (last in first out) principle. The stack is well behaved for stack underflows. The
empty stack is represented by

topwff = 0 , wffstack = 0 = ( 0 . 0 ) ,

and popping an element from this stack will result in the same stack. This can also be interpreted as the stack
consisting of three equal formulas, each v0 = v0.

Formulas can be constructed in code using the definitions in Equation (39). Cantor’s pairing function and its
inverse are evaluated using highly efficient compiler implementations:

proc pair(out, in1, in2) { builtin_pair(out, in1, in2); }
proc unpair(out1, out2, in) { builtin_unpair(out1, out2, in); }

Code Snippet 1: Procs for pairing and unpairing

By checking its implementation, see Section 3.6, one can verify that builtin_pair() will destroy in1 and in2 (i.e.
reset those variables). Similarly, builtin_unpair() will destroy in. Both pairing and unpairing overwrite the
output variable(s). The following procs are implemented to recursively define formulas:

proc pushwff() { pair(wffstack, topwff, wffstack); }
proc popwff() { unpair(topwff, wffstack, wffstack); }
proc v_0_() { pushwff(); topwff = topwff + 0; }
proc v_1_() { pushwff(); topwff = topwff + 1; }
proc v_2_() { pushwff(); topwff = topwff + 2; }
proc v_3_() { pushwff(); topwff = topwff + 3; }
proc v_4_() { pushwff(); topwff = topwff + 4; }

proc cons() { unpair(t2, wffstack, wffstack); pair(topwff, t2, topwff); }
proc weq() { cons(); v_0_(); cons(); }
proc wel() { cons(); v_1_(); cons(); }
proc wim() { cons(); v_2_(); cons(); }
proc wn() { v_3_(); cons(); }
proc wal() { cons(); v_4_(); cons(); }

proc wex() { wn(); wal(); wn(); }
proc wa() { wn(); wim(); wn(); }

Code Snippet 2: Procs for formula definition

The procedures pushwff() and popwff() were discussed above. The procedures v_i_() are short for pushing the
current topwff to the stack and setting the new topwff to i. The variable topwff is incremented by i to save some
states. However, since it is executed right after pushwff, topwff has been set to 0 and the effect is as described.
Similar to v_i_(), cons() is also a helper function. Given the stack

t2 = c , topwff = an , wffstack =
(

an−1 . ( an−2 . ( . . . ( a2 . a1 ) )
)
,

executing cons() will yield:

t2 = 0 , topwff = ( an−1 . an ) , wffstack =
(

an−2 . ( an−3 . ( . . . ( a2 . a1 ) )
)
.
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If we now execute, for instance, v_4_(), we get:

t2 = 0 , topwff = 4 , wffstack =
(

( an−1 . an ) . ( an−2 . ( . . . ( a2 . a1 ) )
)
.

Executing cons() again, will yield:

t2 = 0 , topwff =
(

( an−1 . an ) . 4
)
, wffstack =

(
an−2 . ( an−3 . ( . . . ( a2 . a1 ) )

)
.

Note that the value of topwff is, by definition, now equal to
∣∣∣∀van−1 φan

∣∣∣, where φan is the formula with
∣∣∣φan

∣∣∣ = an.
Next, the following procedures are defined:

proc v_0() { v_0_(); noop_7(); }
proc v_1() { v_1_(); noop_7(); }
proc v_2() { v_2_(); noop_7(); }
proc v_3() { v_3_(); noop_7(); }

proc par1() { pushwff(); topwff = param1; noop_7(); }
proc par2() { pushwff(); topwff = param2; noop_7(); }
proc par3() { pushwff(); topwff = param3; noop_7(); }

Code Snippet 3: Procs for pushing variables/parameters

These procs push the natural number corresponding to v0, . . . , v3 or the current value of param1, . . . , param3
onto the stack. The noop_7() call is short for “no operation” (with argument 7). It is usually only used by the
compiler for alignment purposes, and effectively does nothing. O’Rear added noop_7() to the code because it
helps to save some states. However, since we are not going to examine the compiler in much detail, we will not
explore this topic further. We can now deduce the behavior of wal(). Suppose we are given a stack

t2 = c , topwff = an , wffstack =
(

an−1 . ( an−2 . ( . . . ( a2 . a1 ) )
)

and have param1 = i, param2 = |φ |. Then, executing par1();par2();wal() will yield

t2 = 0 , topwff = | ∀vi φ | , wffstack =
(

an . ( an−1 . ( . . . ( a2 . a1 ) )
)
.

This is called “reverse Polish notation”: We first push | vi | onto the stack, followed by |φ |, and then apply the wal()
procedure, which acts on the last two elements added to the stack. Likewise, the procs weq() and wel() are
used to define atomic formulas, and wim(), wn(), wex(), and wa() to define implications, negations, existential
quantifications, and logical conjunctions of formulas, respectively.

3.4.3 Proofs in the Code

Proofs are finite lists of quadruples: (axiomcode, param1, param2, param3) ∈ N4. The natural number axiomcode
specifies the axiom or inference rule used in the specific proof step. The numbers param1, param2, param3 specify
the corresponding parameters to be inserted for the given axiom or inference rule. This is necessary because our
axioms are mainly axiom schemes. A proof is encoded as a natural number, again using the pairing function, as
follows: A proof of length 1 is denoted as

prooflist = 1 +
(
axiomcode1 . ( param11 . ( param21 . ( param31 . 0 ) ) )

)
.
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A proof of length n + 1 is denoted as

prooflist = 1 +
(
axiomcode1 . ( param11 . ( param21 . ( param31 . p̃ ) ) )

)
, (40)

where p̃ is the representation of a proof of length n. Within the main loop of the program, there is a loop that iterates
every proof step of the current proof. At each iteration, the following lines will be executed:

prooflist = prooflist - 1;

unpair(t2, prooflist, prooflist); builtin_move(axiomcode, t2);

unpair(t2, prooflist, prooflist); builtin_move(param1, t2);

unpair(t2, prooflist, prooflist); builtin_move(param2, t2);

unpair(t2, prooflist, prooflist); builtin_move(param3, t2);

v_0();

Code Snippet 4: Part 2 of the main loop

This unpacks the current proof step, assigns the correct values to the global variables axiomcode, param1, param2
and param3 and pushes the number 0 to the stack. To save some states, the values are not unpacked directly into the
correct variables, but first into the (temporary) variable t2 and then moved with builtin_move(). It also updates
prooflist to p̃ (using the notation in Equation (40)). Note that p̃ = 0 if and only if this was the last step of the
proof. Thus, by checking that prooflist is not 0, we can verify that there is a next step in this proof. Conversely,
if prooflist is equal to 0, we move on to the next proof. These lines of code are located right above the last lines
(at the beginning of the main loop):

proc main() {
if (prooflist == 0) {

prooflist = nextproof;

nextproof = nextproof + 1;

}

Code Snippet 5: Part 1 of the main loop

Next, depending on the unpacked proof step, the algorithm pushes a new element to the wff-stack. If the
quadruple corresponds to an axiom and the conditions of the axiom are satisfied by the parameters, the algorithm
pushes this instance of the axiom onto the wff-stack. If it corresponds to an inference rule, the algorithm will pop
one or two elements from the stack and – if the conditions of the inference rule are met – will push the result. If at
any time the conditions are not met, the algorithm will instead push 0, i.e. v0 = v0.

The algorithm interprets each proof step as follows:

axiomcode param1 param2 param3 Corresponding axiom
1 |ψ | – – MP: pushes |ψ | if |φ | and |φ→ ψ | proved, else v0 = v0
2 i – – G: pushes | ∀vi φ |, where φ is last proved formula
3 |φ | |ψ | | χ | pushes |L1 | with φ, ψ and χ
4 |φ | – – pushes |L2 | with φ
5 |φ | |ψ | – pushes |L3 | with φ and ψ
6 i |φ | |ψ | pushes |L4 | with vi, φ and ψ
7 i j k pushes |L11 | with vi, v j and vk if conditions met, else v0 = v0
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axiomcode param1 param2 param3 Corresponding axiom
8 i j |φ | pushes |L5 | with vi, v j and φ
9 i |φ | – pushes |L6 | with vi and φ
10 i j – pushes |L7 | with vi and v j

11 i j k pushes |L8 | with vi, v j and vk

12 i j k pushes |L9 | with vi, v j and vk

13 i j k pushes |L10 | with vi, v j and vk

14 – – – pushes |ZF1 |
15 |φ | – – pushes |ZF2 | with φ
16 – – – pushes |ZF3 |
17 – – – pushes |ZF4 |
> 17 – – – pushes |ZF5 |

The empty fields in the table correspond to parameters that are ignored by the algorithm. For example, if the axiom
code in the current proof step is 3, we want to execute the following lines of code:

par1(); par2(); wim();

par2(); par3(); wim();

par1(); par3(); wim();

wim(); wim();

If instead the axiom code is, for instance, 15, we want to execute:

v_3(); v_1(); v_2();

v_1(); par1(); wal(); v_2(); v_1(); weq(); wim();

wal(); wex(); wal();

v_1(); v_2();

v_2(); v_1(); wel();

v_3(); v_3(); v_0(); wel(); v_1(); par1(); wal(); wa(); wex(); wim();

v_3(); v_3(); v_0(); wel(); v_1(); par1(); wal(); wa(); wex();

v_2(); v_1(); wel(); wim();

wa();

wal(); wex();

wim();

One way to act depending on the axiom code would be to use a long if-else or switch statement. However, to
save some states, this is done differently in the algorithm. We define the following procedure:

proc select() {
builtin_move(t2, topwff); popwff();

if (axiomcode > 0) {
axiomcode = axiomcode - 1; builtin_move(topwff, t2);

}
}

Code Snippet 6: Proc for axiom code selection
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Suppose we are given a stack

t2 = c , topwff = an , wffstack =
(

an−1 . ( an−2 . ( . . . ( a2 . a1 ) )
)
.

If axiomcode is equal to 0 and we execute select(), we get

t2 = an , topwff = an−1 , wffstack =
(

an−2 . ( an−3 . ( . . . ( a2 . a1 ) )
)
.

On the other hand, if axiomcode is not 0 and we execute select(), we get

t2 = 0 , topwff = an , wffstack =
(

an−2 . ( an−3 . ( . . . ( a2 . a1 ) )
)

and axiomcode is reduced by 1. Let Axcode_1(), . . . , Axcode_17(), Axcode_G17() denote the NQL code we
want to execute when axiomcode equals 1, . . . , 17 and > 17 respectively. After Code Snippet 4 we find:

Axcode_1(); select(); Axcode_2(); select(); Axcode_3(); select();

Axcode_4(); select(); Axcode_5(); select(); Axcode_6(); select();

Axcode_7(); select(); Axcode_8(); select(); Axcode_9(); select();

Axcode_10(); select(); Axcode_11(); select(); Axcode_12(); select();

Axcode_13(); select(); Axcode_14(); select(); Axcode_15(); select();

Axcode_16(); select(); Axcode_17(); select(); Axcode_G17(); select();

Code Snippet 7: Part 3 of the main loop

Note that we use these abbreviations for clarity. They are written out in the original code. If axiomcode is
greater than 1, executing Axcode_n();select(); will reduce axiomcode by 1, push a new formula onto
the stack and delete the second-highest formula, effectively updating topwff. If axiomcode is 1, executing
Axcode_n();select(); will also update topwff. However, when the next part of the code is executed, the
select() proc will undo the changes made by Axcode_n+1(), since axiomcode will be equal to 0. This behavior
continues for all subsequent axioms. Thus, only the axiom with the appropriate axiom code will change the
wff-stack.

At the end of each proof step, we should check whether we have proved 1, i.e. v0 ∈ v0. If so, we stop, if not, we
go to the next iteration in the main loop:

if (topwff == 1) {
return ;

}
}

Code Snippet 8: Part 4 of the main loop

We have reached the end of the main loop and have examined most of the NQL code. The complete project can
be found on GitHub, see [ORe16]. Compiling this code will produce a Turing machine with 748 states that will halt
if and only if TZF−R is inconsistent.

3.5 Failed Attempts to Optimize the Result

As part of this bachelor thesis, there have been various attempts to optimize the value of 748. Unfortunately, not all
of these approaches have yielded positive results, although they have provided valuable insights. In this section, we
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will discuss some of the strategies that proved unsuccessful.

3.5.1 Optimizing the Pairing Function

The code discussed in the last section relies heavily on Cantor’s pairing function. Of course, one could try to
optimize its implementation. Since NQL is a high-level language, the implementation of a procedure to compute this
function can be easily achieved. The following snippets present a first implementation idea:

proc pair(out, in1, in2) {
out = (in1 + in2) * (in1 + in2 + 1) / 2 + in1 ;

}

Code Snippet 9: Attempt 1 of a pairing proc in NQL

proc pair(out, in1, in2) {
out = 0;

in2 = in1 + in2;

while(0 < in2) {
out = out + in2;

in2 = in2 - 1;

}
out = out + in1;

}

Code Snippet 10: Attempt 2 of a pairing proc in NQL

Without a doubt, the first attempt will give the correct result. However, using the operators for multiplication
and division will not yield the most effective Turing machine. The compiler uses subroutines for these calculation
steps, that are highly optimized for general multiplications or divisions, but do not take advantage of the underlying
structure of our function. The second algorithm avoids these operators and takes advantage of triangular numbers
(the “little Gauss formula”) to compute Cantor’s pairing function. However, this procedure requires out and in1 as
well as out and in2 to be distinct. For example, if we were to execute pair(wffstack, topwff, wffstack)
with the procedure in Snippet 10, and topwff was unequal to 0, the while loop would run forever. Moreover, both
attempts do not destroy in1 and in2. This is not a problem but would a priori require us to rewrite the NQL code for
the proof enumerator. Alternatively, we could implement this behaviour into our procedure. As long as in1 and in2
are distinct variables, this is a proc with the desired property:

proc pair(out, in1, in2) {
in2 = in1 + in2;

builtin_move(temp, in1);

while(0 < in2) {
temp = temp + in2; in2 = in2 - 1;

}
out = temp;

}

Code Snippet 11: Attempt 3 of a pairing proc in NQL
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A corresponding unpairing procedure could be implemented in NQL as follows:

proc unpair(out1, out2, in) {
out1 = 0; out2 = 0;

while(true){
temp_out1 = out1; temp_out2 = out2;

pair(temp,temp_out1,temp_out2);

if (temp >= in) {
if (temp == in) { return; }
out1 = 0; out2 = out2 + 1;

} else { out1 = out1 + 1; }
}

}

Code Snippet 12: A possible unpairing proc in NQL

Note that we only need to use temp_out1 and temp_out2 if our pairing proc destroys its input. Otherwise, we can
simplify the above code a bit. Also note that this unpairing proc does not destroy its input.

Let us now implement these procedures in the proof enumerator code to see how they affect the state count. We
will not worry about other changes that may be necessary depending on the specific procedures added. If we replace
the original pairing and unpairing implementations with the procedures provided in Snippets 11 and 12, the result-
ing Turing machine has 1115 states. If we replace only the pairing procedure, but keep builtin_unpair(),
we get a Turing machine with 841 states. On the other hand, if we replace only the unpairing procedure
but keep builtin_pair(), we get a machine with 1017 states. If we keep builtin_unpair() and replace
builtin_pair() with the procedure provided in Snippet 9, we get 845 states. If we replace it with the proc in
Snippet 10, we get 829 states. In all these cases, the number of states has increased by at least 81. Of course,
we would have to make some changes to the code, and theoretically this could reduce the state count. However,
reducing it by more than 80 states would require significant optimization. Also note that we are limited by the
compiler’s capabilities. For example, one might be tempted to replace the while loop in our procs with a recursive
implementation. However, this is not supported by NQL.

We conclude that the builtin implementations are much more efficient than our procedures and further exploration
in this area is unlikely to yield significant gains.

3.5.2 Using a Different Pairing Function

A next approach would be to consider a different pairing function, i.e. a bijective mapping

f :N2 → N , (x, y) 7→ f (x, y)

between N2 and N. Apart from Cantor’s pairing function, we will mainly consider the following functions:

f (x, y) := 2x · (2y + 1) − 1 , e(x, y) :=

 y2 + x if x ̸= max{x, y}
x2 + x + y if x = max{x, y}

We can easily check that f is a bijection, see [Pro22]: Every positive natural number n has a unique prime factor
decomposition. If we set x to be the exponent of 2 in the prime factorization of n, then the product of all other prime
factors must be odd, and thus of the form 2y + 1. The function e is called Elegant Pair, for reference see [Szu06].
These functions can be easily implemented as procs in NQL. For example, the following procedure implements
Elegant Pair:
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proc pair(out, in1, in2) {
if (in1 < in2){ out = in2 * in2 + in1; }
else { out = in1 * in1 + in1 + in2; }

}

Code Snippet 13: A possible implementation of Elegant Pair

Of course, it would also be necessary to introduce a corresponding unpairing procedure. However, simply replacing
builtin_pair() with the above procedure already results in 898 states. This is not surprising since we are using
an if-else statement as well as multiplication. Likewise, if we tried to implement f (x, y), we would have to use a
while loop to compute 2x and perform a multiplication afterwards. This is worse compared to Cantor’s pairing
function, where we could implement the procedure either without using a while or if-else block or without using
multiplication. Also, we would have to implement an unpairing procedure, which would likely add additional states.

Thus, in the absence of a more easily implementable pairing function, and given the highly efficient compiler
implementations of Cantor’s pairing function, we conclude that this approach is not feasible.

3.5.3 Choosing a Different Undecidable Formula

Another idea would be to choose a different formula φ that is independent of ZFC set theory, i.e. neither this formula
nor its negation can be proven in ZFC, assuming ZFC is consistent. If we can construct an n-state Turing machine
that halts if and only if φ holds, and loops otherwise (or vice versa), we can easily show that ZFC does not settle
the value of BB(n). Because for if it did, we could simulate this Turing machine for BB(n) steps within ZFC and
conclude that it either has halted already or will never halt, thus having obtained a proof for either φ or ¬φ. This,
however, is impossible if ZFC is consistent.

There are various known undecidable statements for ZFC. One popular example is the continuum hypothesis:
There is no set A such that

|N| < |A| <
∣∣∣2N∣∣∣ = |R| .

Like most other known undecidable statements, this asserts some property in infinite terms. Of course, one could
create a proof enumerator that searches for a proof of such a statement. However, this would basically yield the
algorithm from Section 3.4 but with a very large number (that corresponds to this statement) replacing 1 in Snippet 8.
Therefore, the resulting machine would have at least 748, but probably many more states. The alternative would be
to check every set A and verify that it does not satisfy |A| <

∣∣∣2N∣∣∣ = |R|. Obviously, this cannot be done in a countable,
finitistic matter.

There is one undecidable statement from number theory, that sounds promising on first sight:

Theorem 3.5.1. There is an explicit Diophantine equation with 31 unknowns that has a solution in N if and only if
ZFC is inconsistent. Thus, assuming that ZFC is consistent, ZFC does not prove that this equation is root-free.

Proof. See [Jon80] for the explicit formula. □

We could, in theory, construct a program that enumerates all possible combinations of these 31 unknowns,
evaluates the Diophantine equation for these numbers, checks whether the result is 0 and halts in that case. This
would yield a Turing machine with n states for some n ∈ N and we would have shown that BB(n) cannot be
calculated by ZFC. The problem with this statement is that it depends on a constant that would first have to be
calculated for ZFC. This constant encodes, in a sense, a proof enumerator for ZFC and is likely to be gigantic. Thus,
we would encode a Turing machine similar to the 748 state machine we explored in 3.4, substitute it for a constant
in an already large equation and build a Turing machine that tries to find a solution iterating over 14 unknowns.
This is unlikely to yield a Turing machine with less than 748 states. Furthermore, we would be confronted with
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a technical challenge: Just copying and pasting the large constant into NQL code and building the equation solver
around it, would in theory compile down to a Turing machine. However, NQL has compilation problems with very
large constants and would likely run out of memory. Thus, one would have to implement a subprogram that first
unpacks this number. This is also part of the strategy discussed in the next section.

An alternative goal might be to improve the upper bound on NPA. Of course, NPA ≤ NZFC ≤ 748 because ZFC
contains Peano arithmetic. However, since ZFC is considerably stronger and more expressive than PA, we can
assume that NPA is smaller than NZFC. An interesting task would be to find an upper bound for PA by adjusting
the proof enumerator of Section 3.4. However, this is not part of this paper. Instead, we will briefly discuss
the possibility of finding a statement that is independent of PA and easily implementable using NQL. Since PA
is the theory about natural numbers, its propositions are much more accessible to implement in NQL. There are
several known undecidable theorems, such as the strengthened finite Ramsey theorem (Paris–Harrington theorem),
Goodstein’s theorem, and the Kanamori–McAloon theorem. These theorems could be implemented in NQL in a
somewhat effective way. However, they all mix existential and universal quantifiers. To implement a meaningful
halting condition, we need instead a formula consisting only of existential quantifiers (called Σ0

1 formulas): If
elements matching the existential quantifiers are found, we return. Likewise, if we are given a proposition consisting
only of universal quantifiers (called Π0

1 formulas), we can consider its negation, which is Σ0
1. However, if the given

proposition mixes existential and universal quantification, there can be no halting condition that asserts the formula.
This is an implicit advantage of Gödel’s second incompleteness theorem over other undecidable propositions: The
sentence “There is no proof of 0 = 1” is Π0

1.
There are some other examples of undecidable Π0

1 or Σ0
1 sentences for ZFC and PA. For example, we mentioned

Harvey Friedman’s graph-theoretic theorem in Section 3.4. In addition, Saharon Shelah provided a true Π0
1 sentence

in [She84] that is not provable in PA. However, implementing these statements in NQL would require considerable
effort due to the complexity of both propositions.

We conclude that at this stage there is no obviously better suited undecidable formula in either PA or ZFC than
searching for a contradiction.

3.5.4 Decompressing and Simulating the Existing Turing Machine

Turing machines are Turing complete, i.e. there exists a Turing machine (so called universal Turing machine) that
can simulate any Turing machine with given input. Such a machine takes a tape as input which encodes both the
Turing machine to simulate, as well as its input. If we were able to...

• provide a universal Turing machine together with its coding for Turing machines and tapes,

• translate the existing 748-state Turing machine and the 0-tape to a tape according to this coding,

• compress this tape,

• build a Turing machine that first generates the decompressed tape,

• secondly decompresses this tape to the actual tape,

• and finally starts the universal Turing machine on this decompressed tape,

we would obtain a Turing machine that halts if and only if the original machine halts. However, if we are able to
compress the tape efficiently enough, the resulting machine may have less than 748 states.

Constructing a universal Turing machine can easily be achieved in NQL. Let (TP(i))i∈Z ⊆ {0, 1} be a tape
with TP(i) representing the i-th cell. We can represent TP as a unique natural number g(TP):

g(TP) :=
∑
i∈Z

TP(i) · 2q(i) , q(i) :=

 −2i − 1 if i < 0 ,
2i else
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In other words, we flip the left side of the tape to the right to get a one-sided tape which can be interpreted as the
binary representation of a natural number. One can easily implement a variable for the read/write head that keeps
track of its position on the single sided tape and moves accordingly. Furthermore, one can implement the decision
process per step of the Turing machine, using if-else statements in NQL. Note that NQL does not currently support
the option of reading tapes as input. Rather, it always assumes that it will start on an empty tape. However, we can
simulate an input using natural numbers as follows: First, encode the 748-state Turing machine as a natural number
and compress it accordingly. Second, construct two procedures in NQL, one to compute the compressed number and
the other to decompress this number to the original encoding. Finally, we can construct a Turing machine in NQL
that first executes the two procedures and passes the resulting value as input to our Turing machine simulator. This
would compile to a Turing machine with the desired behavior.

A first attempt to encode our 748-state Turing machine as a natural number would be to nest the pairing function
on the description of the states of the Turing machine. Although this would result in a simple to interpret number for
NQL, the nesting of the pairing function grows much too fast to be feasible. A more parsimonious approach is the
following: Our machine is defined by its transition function δ as a list of ordered tuples:(

σi
0, d

i
0, s

i
0, σ

i
1, d

i
1, s

i
1

)
∈ {0, 1} × {L,R} × {0, 1, . . . , 748} × {0, 1} × {L,R} × {0, 1, . . . , 748}

We can combine σi
0, d

i
0 and σi

1, d
i
1 to ωi

0 and ωi
1, where

ωi
r =


0 ifσi

r = 0, di
r = L

1 ifσi
r = 0, di

r = R
2 ifσi

r = 1, di
r = L

3 ifσi
r = 1, di

r = R

The natural number we assign to our Turing machine is:

748∑
i=1

(
si

1 + ω
i
1 · 103 + si

0 · 104 + ωi
0 · 107

)
· 10(i−1)8 (41)

This is simply the integer interpretation of the string obtained by listing all states one after the other:

ω748
0

[
s748

0

]
ω748

1

[
s748

1

]
ω747

0

[
s747

0

]
ω747

1

[
s747

1

]
. . . ω1

0

[
s1

0

]
ω1

1

[
s1

1

]
.

We use
[
si

r

]
to denote si

r with leading zeros (if necessary).
The number in Equation (41) can be interpreted by a somewhat simple NQL procedure, and is much smaller than

when nesting the pairing function. Nevertheless, it still has 5984 digits. Even if we could compress it by 90% (or
even 99%), the resulting number would still have about 600 (or 60) digits, making it too large to use as a constant in
NQL. Instead, we would have to calculate it somehow. In addition, we would need to implement the Turing machine
simulator itself (including its procedures to interpret the number according to Equation (41)) and a decompression
procedure. This is unlikely to compile down to a Turing machine with less than 748 states.

Another approach would be to use an existing universal Turing machine and construct a machine that outputs the
encoded tape corresponding to our 748 state machine. However, NQL does not provide a way to control the output
tape. Furthermore, while there are promising universal Turing machines with as few as 15 states (see [NW09]), their
corresponding codings are much more complicated.

In light of these observations, we must conclude that this approach is unlikely to yield much improvement.

70



state a

state b

state a state c

state d

state a state a

state a

state a

Figure 2: Example of a loop in a Turing machine

3.5.5 Peephole Optimization

A completely different strategy is optimizing the Turing machine itself, rather than the compiler or the NQL code.
While it might be too complicated to construct a Turing machine by hand to search for a contradiction in ZFC,
we might be able to make improvements to small parts of the existing 748 state machine. This technique is called
peephole optimization.

A natural initial strategy is to identify ”useless” states that will never be reached because no other state leads to
them. Another approach is to try to find indistinguishable states that can be merged into a single state. In the case of
our Turing machine, however, no such states can be identified.

Another way is to look for loops in the state transition graph. Suppose there is a state a such that the machine
will return to state a at some point in the future, regardless of the contents of the tape. Since we are only concerned
with whether the machine will eventually halt or not, and the machine will never halt once it enters state a, we can
replace all states reachable from a with a single looped state. The diagram in Figure 2 illustrates this idea. Here,
the left child of a node denotes the state the machine will enter if the current symbol is 0, while the right child
corresponds to the state entered if the current symbol is 1. In the example, if the machine enters state a, it will return
to state a after at most four steps, regardless of the tape contents. Thus, we can replace all states in the tree (i.e., a, b,
c, and d) with a new state e defined as

e : (0, L, e, 0, L, e) ,

and replace all references to a, b, c, and d in the original Turing machine with e. The resulting Turing machine will
have three less states, but will halt if and only if the original machine halts.

Unfortunately, our machine does not contain such a loop. We can use a Python function to check this, as shown
in Snippet 14. Note that the time complexity of this function is not exponential; there are at most 748 different states
to check in each layer. We can stop the search when the halting state is found or when the tree contains at least
748 − 3 = 745 different states (since ZFC can compute the value of BB(4)). Running this function on every state
of the 748-state Turing machine shows that there are no such loops. Except for the start states 309 and 384, the
function identifies the halting state as a node in every tree after a maximum of 53 steps. If the function starts with
states 309 or 384, it identifies more than 744 different states in the tree.

We could also investigate whether there is a state where the machine will always halt in the future, regardless of
the contents of the tape. In this case we would look for a tree with only “halt” leaves. We can modify the function in
Snippet 14 accordingly and confirm that our machine does not contain such a state.

3.6 Optimizing the Result: BB(745)

In this last section, we will show how the state count of the Turing machine can be improved.
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def loop_search(start_state , transition_function , max_depth=1000):
# Initialize sets to keep track of visited and current states

visited_states = set([start_state])
current_states = set([start_state])

for depth in range(max_depth):
# Create a new set of states by applying the transition function

next_states = set()
for state in current_states:

next_states.add(transition_function[state][0])

next_states.add(transition_function[state][1])

# Update the current set of states and remove the start state

current_states = next_states - set([start_state])

# Check whether all current states were the start state, if so return

if not current_states: return "Loop detected", depth

# Add the new states to the visited set

visited_states.update(current_states)

# Check whether too many states have been visited or the halting state

# has been found, if so return

if len(visited_states) >= len(transition_function) - 3:
return "No loop, too many visited states", depth

if 0 in visited_states:
return "No loop, halt detected", depth

# If we haven’t come to a conclusion within max_depth iterations , return

return f"No definite loop detected after {max_depth} steps", max_depth

Code Snippet 14: Python algorithm to search for a loop
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3.6.1 Changing the Arguments in the Pairing Function

In Section 3.5.2, we examined various alternative pairing functions but did not find any function that performed
better than Cantor pairing. Note that

( k ∗ n ) := C̃(k, n) := C(n, k) = ( n . k ) = n +
(n + k) · (n + k + 1)

2
= n +

n+k∑
i=1

i

is obviously also a pairing function and can easily be implemented using NQL. We replace the pair() and unpair()
procedures with the ones in Snippet 15.

proc pair(out, in1, in2) {
builtin_pair(out, in2, in1);

}

proc unpair(out1, out2, in) {
builtin_unpair(out2, out1, in);

}

Code Snippet 15: New pairing and unpairing procedures

Since we still rely on the compiler implementations, which destroy in1, in2 for pair() and in for unpair(), we
do not have to change much of the code. Note, however, that replacing the pairing function may change the formulas
corresponding to 0 and 1. The number 0 is often pushed to the wff-stack, representing the true statement v0 = v0. It
remains the same as 0 = ( 0 . 0 ) = ( 0 ∗ 0 ), so 0 can still be safely added to the stack at any point. Furthermore, the
number 1 previously corresponded to the unprovable formula v0 ∈ v0. Now it corresponds to v1 = v0, which has the
universal closure:

∀v0∀v1(v1 = v0) .

This statement can be easily refuted in TZF−R by constructing two distinct sets. Consequently, the algorithm will
only find a proof of v1 = v0 if TZF−R is inconsistent.

Compiling the project with these new procedures yields a Turing machine with 747 states.

3.6.2 Optimizing the Pairing Function in the Compiler

As we have discussed in previous sections, the compiler implementation of Cantor’s pairing function is highly
efficient. It can be found in the file nqlast.py where it is defined as follows:

def emit_builtin_pair(self, out, in1, in2):
t0 = self.get_temp()

extract = self.gensym()

nextdiag = self.gensym()

done = self.gensym()

self.emit_label(extract)

self.emit_dec(in1)

self.emit_goto(nextdiag)

self.emit_inc(t0)

self.emit_inc(in2)

self.emit_goto(extract)

self.emit_label(nextdiag)

self.emit_dec(in2)

73



self.emit_goto(done)

self.emit_inc(t0)

self.emit_transfer(in2, in1)

self.emit_goto(extract)

self.emit_label(done)

self.emit_transfer(out)

self.emit_transfer(t0, out)

self.put_temp(t0)

Code Snippet 16: Pairing function in the Compiler

Since this function is part of the compiler, it will not provide a set of instructions on how to calculate the pairing
of in1 and in2. Rather, it describes how to create a subprogram of a Turing machine that will calculate this pairing
for its interpretation of natural numbers. Since we will not study the compiler in more detail, we will instead try to
understand the underlying idea of this implementation. Let t, r, k and n be given natural numbers (in what follows
taken as global variables ∈ N), that we can relate to the code as follows:

t0{ t ∈ N out{ r ∈ N in1{ k ∈ N in2{ n ∈ N

First, we define three methods, extract(), nextdiag(), and done(), which manipulate the variables t, r, k,
and n, as described in Pseudocode 20, 21, and 22. We denote the initial values of n, k, and t as n0, k0, and t0,
respectively. Now consider what happens when we run the extract() method. Until k is 0, t and n are incremented

1 def extract():
2 if k == 0:
3 nextdiag()

4 else:
5 k = k − 1
6 t = t + 1
7 n = n + 1
8 extract()

Algorithm 20: extract method

1 def nextdiag():
2 if n == 0:
3 done()

4 else:
5 n = n − 1
6 t = t + 1
7 k = n + k
8 n = 0
9 extract()

Algorithm 21: nextdiag method

by 1 and k is decremented by 1. After that the nextdiag() method is entered. At this point, the variables are:

n = n0 + k0 , t = t0 + k0 , k = 0 .
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1 def done(t, r, k, n):
2 r = 0
3 r = r + t
4 t = 0

Algorithm 22: done method

The nextdiag() method increases t by 1, decreases n by 1, and transfers its value to k. By doing so, n is set to 0.
Thus, the variables have the following values before re-entering extract():

n = 0 , t = t0 + k0 + 1 , k = n0 + k0 − 1 .

Right before entering nextdiag() for the second time, the variables have these values:

n = n0 + k0 − 1 , t = t0 + k0 + (n0 + k0) , k = 0 ,

and just after exiting nextdiag() for the second time:

n = 0 , t = t0 + k0 + (n0 + k0) + 1 , k = n0 + k0 − 2 .

This pattern continues. For example, before entering nextdiag() for the third time, the variables are:

n = n0 + k0 − 2 , t = t0 + k0 + ((n0 + k0) + (n0 + k0 − 1)) , k = 0 ,

and after exiting nextdiag() for the third time:

n = 0 , t = t0 + k0 + ((n0 + k0) + (n0 + k0 − 1)) + 1 , k = n0 + k0 − 3 .

Let us skip ahead until the variables have the following values:

n = n0 + k0 − (n0 + k0 − 1) , t = t0 + k0 + ((n0 + k0) + · · · + (n0 + k0 − (n0 + k0 − 2))) , k = 0 .

As usual, we enter nextdiag() which updates n, k, t to:

n = 0 , t = t0 + k0 + ((n0 + k0) + · · · + 2 + 1) , k = 0 .

Then we enter extract(), but since n = k = 0, we immediately skip to done(). This method simply sets r to t, t
to 0 and does not call any other method. Hence, in conclusion, after executing extract() with variables of initial
values n = n0, k = k0 and t = t0, these variables will be updated to:

n = 0 , k = 0 , t = 0 , r = t0 + ( k0 . n0 ) .

One can easily see how the function in Snippet 16 corresponds to this idea. Note that the compiler does not actually
work with natural numbers. Instead, the variables mentioned can be understood as registers that the compiler uses
for constructing the Turing machine.

If we assume the arguments of pair() to be distinct, we can optimize this function. We suggest the following
changes: Move the lines

self.emit_transfer(out) , self.emit_transfer(t0, out)

directly after the first line (i.e. after t0 = self.get_temp()). Also, in the following lines, use out instead of t0.
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def emit_builtin_pair(self, out, in1, in2):
t0 = self.get_temp()

self.emit_transfer(out)

self.emit_transfer(t0, out)

extract = self.gensym()

nextdiag = self.gensym()

done = self.gensym()

self.emit_label(extract)

self.emit_dec(in1)

self.emit_goto(nextdiag)

self.emit_inc(out)

self.emit_inc(in2)

self.emit_goto(extract)

self.emit_label(nextdiag)

self.emit_dec(in2)

self.emit_goto(done)

self.emit_inc(out)

self.emit_transfer(in2, in1)

self.emit_goto(extract)

self.emit_label(done)

self.put_temp(t0)

Code Snippet 17: New pairing function in the Compiler

This corresponds to setting r = t0 and t = 0 before executing extract(), replacing every occurrence of t in
Algorithms 20 and 21 with r, and emptying Algorithm 22. The updated function can be found in Snippet 17.

In some projects – including our proof enumerator – this pairing implementation improves the state count (by 1
in our case). Note, however, that we cannot use this updated function with our project because our arguments for
pair() are not always distinct. For instance, in the cons() procedure, the arguments in2 and out are both set to
topwff. Furthermore, although the changes made in this chapter should produce valid results, they still need to be
checked for correctness with the compiler. Without compiler knowledge, however, this process will prove difficult.

Fortunately, the improvement in the next section works with the old pairing function as well, and produces a
Turing machine with the same number of states as with the new function. Still, our adapted version may be useful
for other projects in NQL. For example, in the pairtest project, which can be found as a sample project on GitHub,
it improves the state count by one (from 239 to 238).

3.6.3 Changing the Formula Definitions

In Equation (39), we assigned a natural number to each formula. We update this definition to the following:∣∣∣ vi = v j
∣∣∣ { (

0 ∗ ( j ∗ i )
)

∣∣∣ vi ∈ v j
∣∣∣ { (

1 ∗ ( j ∗ i )
)

|φ→ ψ | {
(

2 ∗ ( |ψ | ∗ |φ | )
)

| ¬φ | { ( 3 ∗ |φ | )

| ∀vi φ | {
(

4 ∗ ( |φ | ∗ i )
)

(42)

Accordingly, we update the cons() procedure in NQL (switch the inputs topwff and t2 in pair):
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proc cons() { unpair(t2, wffstack, wffstack); pair(topwff, topwff, t2); }

Code Snippet 18: New definition of cons procedure

One can easily verify that weq(), wel(), wim(), wn(), wal(), wex(), and wa() behave as expected with the
updated cons() procedure and formula codings. For instance, let the current state of the wff-stack be as follows:

t2 = c , topwff = an , wffstack =
(

an−1 ∗ ( an−2 ∗ ( . . . ( a2 ∗ a1 ) )
)

If we execute cons(), we get

t2 = 0 , topwff = ( an ∗ an−1 ) , wffstack =
(

an−2 ∗ ( an−3 ∗ ( . . . ( a2 ∗ a1 ) )
)
.

Executing v_4_() yields

t2 = 0 , topwff = 4 , wffstack =
(

( an ∗ an−1 ) ∗ ( an−2 ∗ ( . . . ( a2 ∗ a1 ) )
)
.

If we again execute cons(), we get

t2 = 0 , topwff =
(

4 ∗ ( an ∗ an−1 )
)
, wffstack =

(
an−2 ∗ ( an−3 ∗ ( . . . ( a2 ∗ a1 ) )

)
.

Hence, when we execute par1();par2();wal() with param1 = i and param2 = |φ |, we correctly push

| ∀vi φ |

to the stack. The same holds true for the remaining procedures mentioned.
Note that the formula codings are, by construction, the same as the original. Thus, 0 corresponds to v0 = v0

which can safely be pushed to the stack at any time and 1 corresponds to v0 ∈ v0 which is provable if and only
if TZF−R is inconsistent.

Compiling the project with this change yields a Turing machine with 745 states.
To support the conclusions of this paper (and the original result), an interesting task would be to confirm the

correctness of the NQL compiler using a proof assistant system. The same system could then be used to verify the
NQL code that generates the 745 state machine. This would eliminate the possibility of missed bugs and result in a
very rigorous validation of our results. For now we can state the following:

Theorem 3.6.1. If the NQL compiler and code are both bug-free, then the equation

BB(745) = 1 + · · · + 1︸      ︷︷      ︸
BB(745) times

is not provable within ZFC set theory.
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The 745-State Turing Machine

State σi
0 di

0 si
0 σi

1 di
1 si

1

001 : 0 R 448 1 R 448
002 : 0 R 692 1 R 469
003 : 0 R 146 1 R 457
004 : 0 R 022 1 R 003
005 : 0 L 006 1 L 006
006 : 0 L 007 0 L 007
007 : 0 L 008 0 L 008
008 : 1 L 009 1 L 009
009 : 1 L 010 1 L 010
010 : 0 L 011 0 L 011
011 : 0 L 059 0 L 059
012 : 0 R 515 1 R 005
013 : 0 R 515 1 R 475
014 : 0 R 012 1 R 013
015 : 0 R 645 1 R 014
016 : 0 R 563 1 R 015
017 : 0 R 005 1 R 450
018 : 0 R 017 1 R 449
019 : 0 R 627 1 R 018
020 : 0 R 019 1 R 455
021 : 0 R 016 1 R 020
022 : 0 R 021 1 R 692
023 : 0 R 153 1 R 457
024 : 0 R 022 1 R 023
025 : 0 L 027 1 R 029
026 : 0 R 025 0 R 025
027 : 1 L 539 1 L 539
028 : 0 L 030 1 R 029
029 : 0 R 028 1 R 029
030 : 0 L 031 1 L 031
031 : 0 L 540 0 L 032
032 : 1 L 031 1 L 032
033 : 1 L 034 0 L 035
034 : 0 L 050 1 L 050
035 : 1 L 050 0 L 051
036 : 0 L 038 1 L 038
037 : 1 L 038 0 L 039
038 : 0 L 040 1 L 040
039 : 1 L 040 0 L 041
040 : 0 L 042 1 L 042
041 : 1 L 042 0 L 043
042 : 0 L 044 1 L 044
043 : 1 L 044 0 L 045

State σi
0 di

0 si
0 σi

1 di
1 si

1

044 : 0 L 046 1 L 046
045 : 1 L 046 0 L 047
046 : 0 L 048 1 L 048
047 : 1 L 048 0 L 049
048 : 0 L 001 1 L 001
049 : 1 L 001 0 L 001
050 : 0 L 052 1 L 052
051 : 1 L 052 0 L 053
052 : 0 L 054 1 L 054
053 : 1 L 054 0 L 055
054 : 0 L 056 1 L 056
055 : 1 L 056 0 L 057
056 : 0 L 058 1 L 058
057 : 1 L 058 0 L 059
058 : 0 L 060 1 L 060
059 : 1 L 060 0 L 061
060 : 0 L 062 1 L 062
061 : 1 L 062 0 L 063
062 : 0 L 064 1 L 064
063 : 1 L 064 0 L 065
064 : 0 L 036 1 L 036
065 : 1 L 036 0 L 037
066 : 0 L 538 0 R 067
067 : 1 R 066 1 R 067
068 : 0 R 069 1 R 069
069 : 0 R 070 1 R 070
070 : 1 L 539 1 R 071
071 : 0 R 070 1 R 071
072 : 0 L 073 1 L 073
073 : 0 L 074 0 L 074
074 : 1 L 478 1 L 478
075 : 0 L 076 1 L 076
076 : 1 L 077 1 L 077
077 : 0 L 078 0 L 078
078 : 0 L 083 0 L 083
079 : 0 L 080 1 L 080
080 : 1 L 081 1 L 081
081 : 0 L 082 0 L 082
082 : 1 L 083 1 L 083
083 : 0 L 055 0 L 055
084 : 0 L 085 1 L 085
085 : 0 L 669 0 L 669
086 : 0 L 087 1 L 087
087 : 0 L 097 0 L 097
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State σi
0 di

0 si
0 σi

1 di
1 si

1

088 : 0 L 089 1 L 089
089 : 0 L 090 0 L 090
090 : 0 L 091 0 L 091
091 : 1 L 092 1 L 092
092 : 1 L 093 1 L 093
093 : 1 L 094 1 L 094
094 : 0 L 058 0 L 058
095 : 0 L 096 1 L 096
096 : 1 L 097 1 L 097
097 : 0 L 098 0 L 098
098 : 1 L 099 1 L 099
099 : 1 L 055 1 L 055
100 : 0 L 101 1 L 101
101 : 0 L 102 0 L 102
102 : 0 L 051 0 L 051
103 : 0 L 104 1 L 104
104 : 0 L 105 0 L 105
105 : 0 L 106 0 L 106
106 : 0 L 053 0 L 053
107 : 0 L 108 1 L 108
108 : 1 L 109 1 L 109
109 : 0 L 110 0 L 110
110 : 0 L 111 0 L 111
111 : 0 L 112 0 L 112
112 : 0 L 113 0 L 113
113 : 1 L 059 1 L 059
114 : 0 R 068 1 R 068
115 : 0 R 114 1 R 114
116 : 0 R 115 1 R 115
117 : 0 R 116 1 R 116
118 : 0 R 514 1 R 100
119 : 0 R 527 1 R 095
120 : 0 R 118 1 R 119
121 : 0 R 120 1 R 454
122 : 0 R 121 1 R 575
123 : 0 R 117 1 R 122
124 : 0 R 651 1 R 601
125 : 0 R 531 1 R 514
126 : 0 R 450 1 R 450
127 : 0 R 125 1 R 126
128 : 0 R 638 1 R 127
129 : 0 R 124 1 R 128
130 : 0 R 129 1 R 456
131 : 0 R 123 1 R 130

State σi
0 di

0 si
0 σi

1 di
1 si

1

132 : 0 R 609 1 R 560
133 : 0 R 629 1 R 454
134 : 0 R 132 1 R 133
135 : 0 R 134 1 R 456
136 : 0 R 684 1 R 135
137 : 0 R 131 1 R 136
138 : 0 R 609 1 R 577
139 : 0 R 631 1 R 454
140 : 0 R 138 1 R 139
141 : 0 R 140 1 R 456
142 : 0 R 684 1 R 141
143 : 0 R 609 1 R 582
144 : 0 R 633 1 R 454
145 : 0 R 143 1 R 144
146 : 0 R 145 1 R 456
147 : 0 R 684 1 R 146
148 : 0 R 142 1 R 147
149 : 0 R 137 1 R 148
150 : 0 R 609 1 R 590
151 : 0 R 635 1 R 454
152 : 0 R 150 1 R 151
153 : 0 R 152 1 R 456
154 : 0 R 684 1 R 153
155 : 0 R 154 1 R 458
156 : 0 R 155 1 R 459
157 : 0 R 149 1 R 156
158 : 0 R 024 1 R 004
159 : 0 R 702 1 R 158
160 : 0 R 157 1 R 159
161 : 0 R 512 1 R 498
162 : 0 R 655 1 R 454
163 : 0 R 619 1 R 162
164 : 0 R 518 1 R 568
165 : 0 R 164 1 R 672
166 : 0 R 657 1 R 165
167 : 0 R 588 1 R 166
168 : 0 R 163 1 R 167
169 : 0 R 088 1 R 515
170 : 0 R 079 1 R 450
171 : 0 R 169 1 R 170
172 : 0 R 171 1 R 627
173 : 0 R 103 1 R 450
174 : 0 R 173 1 R 449
175 : 0 R 174 1 R 644
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State σi
0 di

0 si
0 σi

1 di
1 si

1

176 : 0 R 172 1 R 175
177 : 0 R 086 1 R 450
178 : 0 R 177 1 R 449
179 : 0 R 611 1 R 178
180 : 0 R 179 1 R 580
181 : 0 R 176 1 R 180
182 : 0 R 168 1 R 181
183 : 0 R 631 1 R 611
184 : 0 R 183 1 R 162
185 : 0 R 184 1 R 456
186 : 0 R 185 1 R 457
187 : 0 R 182 1 R 186
188 : 0 R 187 1 R 558
189 : 0 R 744 1 R 188
190 : 0 R 161 1 R 189
191 : 0 R 160 1 R 190
192 : 0 R 024 1 R 459
193 : 0 R 192 1 R 498
194 : 0 R 512 1 R 735
195 : 0 R 193 1 R 194
196 : 0 R 558 1 R 459
197 : 0 R 196 1 R 498
198 : 0 R 504 1 R 744
199 : 0 R 197 1 R 198
200 : 0 R 195 1 R 199
201 : 0 R 191 1 R 200
202 : 0 R 504 1 R 512
203 : 0 R 744 1 R 498
204 : 0 R 202 1 R 203
205 : 0 R 512 1 R 744
206 : 0 R 744 1 R 744
207 : 0 R 205 1 R 206
208 : 0 R 204 1 R 207
209 : 0 R 745 1 R 459
210 : 0 R 209 1 R 498
211 : 0 R 197 1 R 210
212 : 0 R 744 1 R 196
213 : 0 R 203 1 R 212
214 : 0 R 211 1 R 213
215 : 0 R 208 1 R 214
216 : 0 R 201 1 R 215
217 : 0 R 498 1 R 498
218 : 0 R 209 1 R 504
219 : 0 R 217 1 R 218

State σi
0 di

0 si
0 σi

1 di
1 si

1

220 : 0 R 206 1 R 197
221 : 0 R 219 1 R 220
222 : 0 R 744 1 R 735
223 : 0 R 202 1 R 222
224 : 0 R 498 1 R 504
225 : 0 R 735 1 R 498
226 : 0 R 224 1 R 225
227 : 0 R 223 1 R 226
228 : 0 R 221 1 R 227
229 : 0 R 194 1 R 206
230 : 0 R 504 1 R 739
231 : 0 R 197 1 R 230
232 : 0 R 229 1 R 231
233 : 0 R 161 1 R 230
234 : 0 R 735 1 R 744
235 : 0 R 234 1 R 224
236 : 0 R 233 1 R 235
237 : 0 R 232 1 R 236
238 : 0 R 228 1 R 237
239 : 0 R 216 1 R 238
240 : 0 R 737 1 R 512
241 : 0 R 240 1 R 224
242 : 0 R 737 1 R 735
243 : 0 R 744 1 R 460
244 : 0 R 242 1 R 243
245 : 0 R 241 1 R 244
246 : 0 R 580 1 R 139
247 : 0 R 515 1 R 568
248 : 0 R 518 1 R 667
249 : 0 R 247 1 R 248
250 : 0 R 658 1 R 249
251 : 0 R 596 1 R 250
252 : 0 R 246 1 R 251
253 : 0 R 088 1 R 518
254 : 0 R 107 1 R 450
255 : 0 R 253 1 R 254
256 : 0 R 255 1 R 644
257 : 0 R 174 1 R 627
258 : 0 R 256 1 R 257
259 : 0 R 654 1 R 454
260 : 0 R 593 1 R 259
261 : 0 R 258 1 R 260
262 : 0 R 252 1 R 261
263 : 0 R 659 1 R 515
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State σi
0 di

0 si
0 σi

1 di
1 si

1

264 : 0 R 075 1 R 450
265 : 0 R 263 1 R 264
266 : 0 R 265 1 R 627
267 : 0 R 084 1 R 450
268 : 0 R 267 1 R 449
269 : 0 R 268 1 R 644
270 : 0 R 266 1 R 269
271 : 0 R 167 1 R 270
272 : 0 R 174 1 R 611
273 : 0 R 272 1 R 455
274 : 0 R 273 1 R 456
275 : 0 R 271 1 R 274
276 : 0 R 262 1 R 275
277 : 0 R 276 1 R 558
278 : 0 R 277 1 R 498
279 : 0 R 278 1 R 202
280 : 0 R 733 1 R 279
281 : 0 R 245 1 R 280
282 : 0 R 735 1 R 735
283 : 0 R 504 1 R 498
284 : 0 R 282 1 R 283
285 : 0 R 194 1 R 234
286 : 0 R 284 1 R 285
287 : 0 R 197 1 R 224
288 : 0 R 735 1 R 460
289 : 0 R 288 1 R 461
290 : 0 R 287 1 R 289
291 : 0 R 286 1 R 290
292 : 0 R 281 1 R 291
293 : 0 R 198 1 R 197
294 : 0 R 741 1 R 293
295 : 0 R 739 1 R 460
296 : 0 R 224 1 R 295
297 : 0 R 296 1 R 741
298 : 0 R 294 1 R 297
299 : 0 R 498 1 R 512
300 : 0 R 739 1 R 504
301 : 0 R 299 1 R 300
302 : 0 R 231 1 R 301
303 : 0 R 512 1 R 739
304 : 0 R 303 1 R 206
305 : 0 R 304 1 R 231
306 : 0 R 302 1 R 305
307 : 0 R 298 1 R 306

State σi
0 di

0 si
0 σi

1 di
1 si

1

308 : 0 R 292 1 R 307
309 : 0 R 239 1 R 308
310 : 0 R 737 1 R 504
311 : 0 R 299 1 R 310
312 : 0 R 512 1 R 737
313 : 0 R 312 1 R 206
314 : 0 R 311 1 R 313
315 : 0 R 161 1 R 240
316 : 0 R 231 1 R 315
317 : 0 R 314 1 R 316
318 : 0 R 504 1 R 737
319 : 0 R 318 1 R 206
320 : 0 R 196 1 R 711
321 : 0 R 711 1 R 702
322 : 0 R 320 1 R 321
323 : 0 R 319 1 R 322
324 : 0 R 737 1 R 711
325 : 0 R 704 1 R 737
326 : 0 R 324 1 R 325
327 : 0 R 744 1 R 711
328 : 0 R 327 1 R 325
329 : 0 R 326 1 R 328
330 : 0 R 323 1 R 329
331 : 0 R 317 1 R 330
332 : 0 R 737 1 R 744
333 : 0 R 321 1 R 332
334 : 0 R 333 1 R 733
335 : 0 R 735 1 R 702
336 : 0 R 704 1 R 739
337 : 0 R 335 1 R 336
338 : 0 R 719 1 R 704
339 : 0 R 212 1 R 338
340 : 0 R 337 1 R 339
341 : 0 R 334 1 R 340
342 : 0 R 711 1 R 704
343 : 0 R 498 1 R 735
344 : 0 R 342 1 R 343
345 : 0 R 739 1 R 744
346 : 0 R 342 1 R 345
347 : 0 R 344 1 R 346
348 : 0 R 289 1 R 741
349 : 0 R 347 1 R 348
350 : 0 R 341 1 R 349
351 : 0 R 331 1 R 350
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State σi
0 di

0 si
0 σi

1 di
1 si

1

352 : 0 R 735 1 R 704
353 : 0 R 711 1 R 711
354 : 0 R 352 1 R 353
355 : 0 R 719 1 R 719
356 : 0 R 325 1 R 355
357 : 0 R 354 1 R 356
358 : 0 R 702 1 R 737
359 : 0 R 704 1 R 498
360 : 0 R 358 1 R 359
361 : 0 R 360 1 R 289
362 : 0 R 357 1 R 361
363 : 0 R 733 1 R 741
364 : 0 R 744 1 R 719
365 : 0 R 719 1 R 702
366 : 0 R 364 1 R 365
367 : 0 R 737 1 R 704
368 : 0 R 367 1 R 343
369 : 0 R 366 1 R 368
370 : 0 R 363 1 R 369
371 : 0 R 362 1 R 370
372 : 0 R 342 1 R 332
373 : 0 R 372 1 R 733
374 : 0 R 363 1 R 373
375 : 0 R 704 1 R 711
376 : 0 R 212 1 R 375
377 : 0 R 711 1 R 737
378 : 0 R 355 1 R 377
379 : 0 R 376 1 R 378
380 : 0 R 348 1 R 379
381 : 0 R 374 1 R 380
382 : 0 R 371 1 R 381
383 : 0 R 351 1 R 382
384 : 0 R 309 1 R 383
385 : 0 R 365 1 R 332
386 : 0 R 735 1 R 711
387 : 0 R 386 1 R 325
388 : 0 R 385 1 R 387
389 : 0 R 222 1 R 461
390 : 0 R 389 1 R 741
391 : 0 R 388 1 R 390
392 : 0 R 196 1 R 704
393 : 0 R 711 1 R 719
394 : 0 R 392 1 R 393
395 : 0 R 737 1 R 719

State σi
0 di

0 si
0 σi

1 di
1 si

1

396 : 0 R 393 1 R 395
397 : 0 R 394 1 R 396
398 : 0 R 358 1 R 461
399 : 0 R 398 1 R 733
400 : 0 R 397 1 R 399
401 : 0 R 391 1 R 400
402 : 0 R 741 1 R 372
403 : 0 R 402 1 R 348
404 : 0 R 702 1 R 704
405 : 0 R 392 1 R 404
406 : 0 R 737 1 R 702
407 : 0 R 406 1 R 404
408 : 0 R 405 1 R 407
409 : 0 R 324 1 R 342
410 : 0 R 367 1 R 375
411 : 0 R 409 1 R 410
412 : 0 R 408 1 R 411
413 : 0 R 403 1 R 412
414 : 0 R 401 1 R 413
415 : 0 R 702 1 R 739
416 : 0 R 367 1 R 415
417 : 0 R 744 1 R 704
418 : 0 R 417 1 R 415
419 : 0 R 416 1 R 418
420 : 0 R 375 1 R 332
421 : 0 R 420 1 R 733
422 : 0 R 419 1 R 421
423 : 0 R 289 1 R 733
424 : 0 R 741 1 R 389
425 : 0 R 423 1 R 424
426 : 0 R 422 1 R 425
427 : 0 R 518 1 R 072
428 : 0 R 518 1 R 079
429 : 0 R 427 1 R 428
430 : 0 R 641 1 R 429
431 : 0 R 619 1 R 430
432 : 0 R 665 1 R 000
433 : 0 R 432 1 R 449
434 : 0 R 644 1 R 433
435 : 0 R 434 1 R 455
436 : 0 R 431 1 R 435
437 : 0 R 436 1 R 457
438 : 0 R 437 1 R 458
439 : 0 R 558 1 R 438
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State σi
0 di

0 si
0 σi

1 di
1 si

1

440 : 0 R 439 1 R 460
441 : 0 R 440 1 R 461
442 : 0 R 441 1 R 451
443 : 0 R 363 1 R 442
444 : 0 R 443 1 R 452
445 : 0 R 426 1 R 444
446 : 0 R 414 1 R 445
447 : 0 R 446 1 R 453
448 : 0 R 384 1 R 447
449 : 0 L 035 1 L 035
450 : 0 L 033 1 L 033
451 : 0 L 037 1 L 037
452 : 0 L 041 1 L 041
453 : 0 L 047 1 L 047
454 : 0 L 051 1 L 051
455 : 0 L 053 1 L 053
456 : 0 L 055 1 L 055
457 : 0 L 057 1 L 057
458 : 0 L 059 1 L 059
459 : 0 L 061 1 L 061
460 : 0 L 063 1 L 063
461 : 0 L 065 1 L 065
462 : 0 R 520 1 R 568
463 : 0 R 462 1 R 480
464 : 0 R 463 1 R 484
465 : 0 R 612 1 R 487
466 : 0 R 464 1 R 465
467 : 0 R 611 1 R 641
468 : 0 R 467 1 R 455
469 : 0 R 466 1 R 468
470 : 0 L 471 1 L 471
471 : 0 L 472 0 L 472
472 : 0 L 473 0 L 473
473 : 0 L 474 0 L 474
474 : 0 L 054 0 L 054
475 : 0 L 476 1 L 476
476 : 1 L 477 1 L 477
477 : 0 L 478 0 L 478
478 : 1 L 053 1 L 053
479 : 0 R 525 1 R 568
480 : 0 R 528 1 R 529
481 : 0 R 479 1 R 480
482 : 0 R 470 1 R 516
483 : 0 R 475 1 R 528

State σi
0 di

0 si
0 σi

1 di
1 si

1

484 : 0 R 482 1 R 483
485 : 0 R 481 1 R 484
486 : 0 R 470 1 R 450
487 : 0 R 486 1 R 449
488 : 0 R 615 1 R 487
489 : 0 R 485 1 R 488
490 : 0 R 621 1 R 642
491 : 0 R 490 1 R 455
492 : 0 R 489 1 R 491
493 : 0 R 652 1 R 611
494 : 0 R 580 1 R 493
495 : 0 R 494 1 R 508
496 : 0 R 492 1 R 495
497 : 0 R 496 1 R 458
498 : 0 R 497 1 R 459
499 : 0 R 653 1 R 611
500 : 0 R 584 1 R 499
501 : 0 R 500 1 R 508
502 : 0 R 492 1 R 501
503 : 0 R 502 1 R 458
504 : 0 R 503 1 R 459
505 : 0 R 654 1 R 611
506 : 0 R 593 1 R 505
507 : 0 R 641 1 R 454
508 : 0 R 507 1 R 455
509 : 0 R 506 1 R 508
510 : 0 R 492 1 R 509
511 : 0 R 510 1 R 458
512 : 0 R 511 1 R 459
513 : 0 R 026 1 R 513
514 : 0 R 513 1 R 514
515 : 0 R 514 1 R 515
516 : 0 R 525 1 R 516
517 : 0 R 516 1 R 517
518 : 0 R 515 1 R 518
519 : 0 R 518 1 R 519
520 : 0 R 519 1 R 520
521 : 0 R 520 1 R 521
522 : 0 R 521 1 R 522
523 : 0 R 522 1 R 523
524 : 0 R 523 1 R 524
525 : 0 R 524 1 R 525
526 : 0 R 067 1 R 526
527 : 0 R 526 1 R 527
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State σi
0 di

0 si
0 σi

1 di
1 si

1

528 : 0 R 527 1 R 528
529 : 0 R 537 1 R 529
530 : 0 R 529 1 R 530
531 : 0 R 571 1 R 531
532 : 0 R 531 1 R 532
533 : 0 R 532 1 R 533
534 : 0 R 533 1 R 534
535 : 0 R 534 1 R 535
536 : 0 R 535 1 R 536
537 : 0 R 536 1 R 537
538 : 0 L 033 1 L 539
539 : 0 L 538 1 L 539
540 : 0 L 449 1 L 541
541 : 0 L 540 1 L 541
542 : 0 L 543 1 L 543
543 : 0 L 081 0 L 081
544 : 0 R 616 1 R 607
545 : 0 R 639 1 R 454
546 : 0 R 544 1 R 545
547 : 0 R 546 1 R 456
548 : 0 R 547 1 R 699
549 : 0 R 521 1 R 542
550 : 0 R 533 1 R 521
551 : 0 R 549 1 R 550
552 : 0 R 126 1 R 449
553 : 0 R 551 1 R 552
554 : 0 R 609 1 R 611
555 : 0 R 553 1 R 554
556 : 0 R 555 1 R 508
557 : 0 R 556 1 R 457
558 : 0 R 548 1 R 557
559 : 0 R 521 1 R 597
560 : 0 R 559 1 R 600
561 : 0 R 521 1 R 568
562 : 0 R 561 1 R 571
563 : 0 R 562 1 R 574
564 : 0 L 565 1 L 565
565 : 0 L 566 0 L 566
566 : 0 L 567 0 L 567
567 : 0 L 052 0 L 052
568 : 0 L 569 1 L 569
569 : 1 L 102 1 L 102
570 : 0 R 519 1 R 568
571 : 0 R 528 1 R 571

State σi
0 di

0 si
0 σi

1 di
1 si

1

572 : 0 R 570 1 R 571
573 : 0 R 564 1 R 450
574 : 0 R 573 1 R 449
575 : 0 R 572 1 R 574
576 : 0 R 522 1 R 597
577 : 0 R 576 1 R 600
578 : 0 R 522 1 R 568
579 : 0 R 578 1 R 571
580 : 0 R 579 1 R 574
581 : 0 R 523 1 R 597
582 : 0 R 581 1 R 600
583 : 0 R 585 1 R 571
584 : 0 R 583 1 R 574
585 : 0 R 523 1 R 568
586 : 0 R 571 1 R 530
587 : 0 R 585 1 R 586
588 : 0 R 587 1 R 574
589 : 0 R 524 1 R 597
590 : 0 R 589 1 R 600
591 : 0 R 524 1 R 568
592 : 0 R 591 1 R 571
593 : 0 R 592 1 R 574
594 : 0 R 528 1 R 530
595 : 0 R 591 1 R 594
596 : 0 R 595 1 R 574
597 : 0 L 598 1 L 598
598 : 1 L 035 1 L 035
599 : 0 R 514 1 R 597
600 : 0 R 646 1 R 450
601 : 0 R 599 1 R 600
602 : 0 R 532 1 R 646
603 : 0 R 118 1 R 602
604 : 0 R 528 1 R 646
605 : 0 R 118 1 R 604
606 : 0 R 520 1 R 597
607 : 0 R 606 1 R 600
608 : 0 R 520 1 R 100
609 : 0 R 608 1 R 604
610 : 0 R 516 1 R 597
611 : 0 R 610 1 R 600
612 : 0 R 613 1 R 602
613 : 0 R 516 1 R 100
614 : 0 R 537 1 R 646
615 : 0 R 613 1 R 614
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State σi
0 di

0 si
0 σi

1 di
1 si

1

616 : 0 R 613 1 R 604
617 : 0 R 516 1 R 568
618 : 0 R 617 1 R 571
619 : 0 R 618 1 R 574
620 : 0 R 525 1 R 597
621 : 0 R 620 1 R 600
622 : 0 R 624 1 R 602
623 : 0 R 624 1 R 640
624 : 0 R 525 1 R 100
625 : 0 R 624 1 R 604
626 : 0 R 515 1 R 597
627 : 0 R 626 1 R 600
628 : 0 R 533 1 R 646
629 : 0 R 636 1 R 628
630 : 0 R 534 1 R 646
631 : 0 R 636 1 R 630
632 : 0 R 535 1 R 646
633 : 0 R 636 1 R 632
634 : 0 R 536 1 R 646
635 : 0 R 636 1 R 634
636 : 0 R 515 1 R 100
637 : 0 R 527 1 R 646
638 : 0 R 636 1 R 637
639 : 0 R 636 1 R 602
640 : 0 R 529 1 R 646
641 : 0 R 636 1 R 640
642 : 0 R 636 1 R 614
643 : 0 R 518 1 R 597
644 : 0 R 643 1 R 600
645 : 0 R 649 1 R 628
646 : 0 L 647 1 L 647
647 : 0 L 648 0 L 648
648 : 0 L 050 0 L 050
649 : 0 R 518 1 R 100
650 : 0 R 531 1 R 646
651 : 0 R 649 1 R 650
652 : 0 R 649 1 R 630
653 : 0 R 649 1 R 632
654 : 0 R 649 1 R 634
655 : 0 R 649 1 R 640
656 : 0 R 517 1 R 100
657 : 0 R 656 1 R 632
658 : 0 R 656 1 R 634
659 : 0 L 660 1 L 660

State σi
0 di

0 si
0 σi

1 di
1 si

1

660 : 0 L 661 0 L 661
661 : 0 L 662 0 L 662
662 : 1 L 663 1 L 663
663 : 1 L 664 1 L 664
664 : 0 L 056 0 L 056
665 : 0 L 666 1 L 666
666 : 0 L 035 0 L 035
667 : 0 L 668 1 L 668
668 : 1 L 669 1 L 669
669 : 0 L 670 0 L 670
670 : 0 L 099 0 L 099
671 : 0 R 605 1 R 601
672 : 0 R 515 1 R 667
673 : 0 R 527 1 R 520
674 : 0 R 672 1 R 673
675 : 0 R 607 1 R 674
676 : 0 R 671 1 R 675
677 : 0 R 665 1 R 659
678 : 0 R 677 1 R 449
679 : 0 R 678 1 R 603
680 : 0 R 659 1 R 450
681 : 0 R 680 1 R 449
682 : 0 R 681 1 R 454
683 : 0 R 679 1 R 682
684 : 0 R 676 1 R 683
685 : 0 R 625 1 R 621
686 : 0 R 537 1 R 520
687 : 0 R 672 1 R 686
688 : 0 R 607 1 R 687
689 : 0 R 685 1 R 688
690 : 0 R 678 1 R 622
691 : 0 R 690 1 R 682
692 : 0 R 689 1 R 691
693 : 0 R 537 1 R 516
694 : 0 R 672 1 R 693
695 : 0 R 611 1 R 694
696 : 0 R 685 1 R 695
697 : 0 R 678 1 R 623
698 : 0 R 697 1 R 682
699 : 0 R 696 1 R 698
700 : 0 R 492 1 R 457
701 : 0 R 700 1 R 458
702 : 0 R 701 1 R 459
703 : 0 R 709 1 R 458
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State σi
0 di

0 si
0 σi

1 di
1 si

1

704 : 0 R 703 1 R 459
705 : 0 R 720 1 R 449
706 : 0 R 705 1 R 454
707 : 0 R 706 1 R 455
708 : 0 R 707 1 R 456
709 : 0 R 492 1 R 708
710 : 0 R 717 1 R 458
711 : 0 R 710 1 R 459
712 : 0 R 529 1 R 529
713 : 0 R 712 1 R 449
714 : 0 R 713 1 R 454
715 : 0 R 714 1 R 455
716 : 0 R 715 1 R 456
717 : 0 R 492 1 R 716
718 : 0 R 725 1 R 458
719 : 0 R 718 1 R 459
720 : 0 R 529 1 R 450
721 : 0 R 712 1 R 720
722 : 0 R 721 1 R 454
723 : 0 R 722 1 R 455
724 : 0 R 723 1 R 456
725 : 0 R 492 1 R 724
726 : 0 R 712 1 R 712
727 : 0 R 726 1 R 454
728 : 0 R 727 1 R 455
729 : 0 R 728 1 R 456
730 : 0 R 492 1 R 729
731 : 0 R 209 1 R 744
732 : 0 R 209 1 R 460
733 : 0 R 731 1 R 732
734 : 0 R 002 1 R 730
735 : 0 R 734 1 R 743
736 : 0 R 002 1 R 709
737 : 0 R 736 1 R 743
738 : 0 R 002 1 R 700
739 : 0 R 738 1 R 743
740 : 0 R 209 1 R 735
741 : 0 R 740 1 R 732
742 : 0 R 002 1 R 717
743 : 0 R 002 1 R 458
744 : 0 R 742 1 R 743
745 : 0 R 725 1 R 002
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